Free Access
Issue |
ESAIM: M2AN
Volume 49, Number 4, July-August 2015
|
|
---|---|---|
Page(s) | 1157 - 1192 | |
DOI | https://doi.org/10.1051/m2an/2015006 | |
Published online | 30 June 2015 |
- J.G. Van Bladel, Electromagnetic Fields, 2nd edition. IEEE Press, Piscataway, NJ, USA (2007). [Google Scholar]
- D.K. Cheng and J.-A. Kong, Covariant descriptions of bianisotropic media. Proc. IEEE 56 (1968) 248–251. [CrossRef] [Google Scholar]
- A.M. Messiaen and P.E. Vandenplas, High-frequency effect due to the axial drift velocity of a plasma column. Phys. Rev. 149 (1966) 131–140. [CrossRef] [Google Scholar]
- C. Yeh, Scattering obliquely incident microwaves by a moving plasma column. J. Appl. Phys. 40 (1969) 5066–5075. [CrossRef] [Google Scholar]
- T. Shiozawa and S. Seikai, Scattering of electromagnetic waves from an inhomogeneous magnetoplasma column moving in the axial direction. IEEE Trans. Antennas Propag. 20 (1972) 455–463. [CrossRef] [Google Scholar]
- J.V. Parker, J.C. Nickel and R.W. Gould, Resonance oscillations in a hot nonuniform plasma. Phys. Fluids 7 (1964) 1489–1500. [CrossRef] [Google Scholar]
- D. Censor, Scattering of electromagnetic waves by a cylinder moving along its axis. IEEE Trans. Microwave Theory Tech. 17 (1969) 154–158. [CrossRef] [Google Scholar]
- Y. Yan, Mass flow measurement of bulk solids in pneumatic pipelines. Meas. Sci. Technol. 7 (1996) 1687 [CrossRef] [Google Scholar]
- C. Yeh, Reflection and transmission of electromagnetic waves by a moving dielectric medium. J. Appl. Phys. 36 (1965) 3513–3517. [CrossRef] [Google Scholar]
- V.P. Pyati, Reflection and refraction of electromagnetic waves by a moving dielectric medium. J. Appl. Phys. 38 (1967) 652–655. [CrossRef] [Google Scholar]
- M. Pastorino and M. Raffetto, Scattering of electromagnetic waves from a multilayer elliptic cylinder moving in the axial direction. IEEE Trans. Antennas Propag. 61 (2013) 4741–4753. [CrossRef] [Google Scholar]
- A. Freni, C. Mias and R.L. Ferrari, Finite element analysis of electromagnetic wave scattering by a cylinder moving along its axis surrounded by a longitudinal corrugated structure. IEEE Trans. Magn. 32 (1996) 874–877. [CrossRef] [Google Scholar]
- A. Sommerfeld, Electrodynamics. Lectures on theoretical physics. Academic Press (1959). [Google Scholar]
- P. Fernandes and M. Raffetto, Well posedness and finite element approximability of time-harmonic electromagnetic boundary value problems involving bianisotropic materials and metamaterials. Math. Models Methods Appl. Sci. 19 (2009) 2299–2335. [Google Scholar]
- P. Cocquet, P. Mazet and V. Mouysset, On the existence and uniqueness of a solution for some frequency-dependent partial differential equations coming from the modeling of metamaterials. SIAM J. Math. Anal. 44 (2012) 3806–3833. [CrossRef] [MathSciNet] [Google Scholar]
- T. Kato, Perturbation theory for linear operators, 2nd edition. Springer–Verlag, Berlin (1995). [Google Scholar]
- P. Fernandes, M. Ottonello and M. Raffetto, Regularity of time-harmonic electromagnetic fields in the interior of bianisotropic materials and metamaterials. IMA J. Appl. Math. 79 (2014) 54–93. [CrossRef] [MathSciNet] [Google Scholar]
- P. Monk, Finite element methods for Maxwell’s equations. Oxford Science Publications, Oxford (2003). [Google Scholar]
- R.C. Costen and D. Adamson, Three-dimensional derivation of the electrodynamic jump conditions and momentum-energy laws at a moving boundary. Proc. IEEE 53 (1965) 1181–1196. [CrossRef] [Google Scholar]
- D. De Zutter, Scattering by a rotating circular cylinder with finite conductivity. IEEE Trans. Antennas Propag. 31 (1983) 166–169. [CrossRef] [Google Scholar]
- C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for Maxwell’s equations. SIAM J. Math. Anal. 27 (1996) 1597–1630. [CrossRef] [MathSciNet] [Google Scholar]
- A. Alonso and M. Raffetto, Unique solvability for electromagnetic boundary value problems in the presence of partly lossy inhomogeneous anisotropic media and mixed boundary conditions. Math. Models Methods Appl. Sci. 13 (2003) 597–611. [CrossRef] [Google Scholar]
- M.A. Day, The no-slip condition of fluid dynamics. Erkenntnis 33 (1990) 285–296. [CrossRef] [MathSciNet] [Google Scholar]
- T. Shiozawa and I. Kawano, Electromagnetic scattering by an infinitely long cylinder moving along its axis. Electron. Commun. Jpn 53-B (1970) 45–51. [Google Scholar]
- B.V. Stanić and N.B. Nešković, Electromagnetic reflectivity and scattering by non-uniformly moving plane and cylindrical jet streams. Int. J. Electronics 41 (1976) 351–363. [CrossRef] [Google Scholar]
- V. Girault and P.A. Raviart, Finite element methods for Navier–Stokes equations. Springer-Verlag, Berlin (1986). [Google Scholar]
- J.D. Jackson, Classical electrodynamics, 3rd edition. Wiley, New York (1999). [Google Scholar]
- C. Tai, The dyadic Green’s function for a moving isotropic medium. IEEE Trans. Antennas Propag. 13 (1965) 322–323. [CrossRef] [Google Scholar]
- J.A. Kong and D.K. Cheng, On guided waves in moving anisotropic media. IEEE Trans. Microwave Theory Tech. 19 (1968) 99–103. [CrossRef] [Google Scholar]
- L.J. Du and R.T. Compton Jr., Cutoff phenomena for guided waves in moving media. IEEE Trans. Microwave Theory Tech. 14 (1966) 358–363. [CrossRef] [Google Scholar]
- Y. Zhu and S. Granick, Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett. 88 (2002) 106102. [CrossRef] [PubMed] [Google Scholar]
- R. Dautray and J. L. Lions, Mathematical analysis and numerical methods for science and technology. Vol. 3: Spectral theory and applications. Springer-Verlag, Berlin (1988). [Google Scholar]
- F. Ben Belgacem, C. Bernardi, M. Costabel and M. Dauge, Un résultat de densité pour les équations de Maxwell, C. R. Acad. Sci. Paris Sér. I 324 (1997) 731–736. [CrossRef] [MathSciNet] [Google Scholar]
- J. Jin. The finite element method in electromagnetics. John Wiley & Sons, New York (1993). [Google Scholar]
- G. Franceschetti, Electromagnetics: theory, techniques and engineering paradigms. Plenum Press, New York (1997). [Google Scholar]
- A.E. Taylor, Introduction to functional analysis. John Wiley & Sons, New York (1958). [Google Scholar]
- P. Fernandes and M. Raffetto, Existence, uniqueness and finite element approximation of the solution of time-harmonic electromagnetic boundary value problems involving metamaterials. COMPEL 24 (2005) 1450–1469. [CrossRef] [MathSciNet] [Google Scholar]
- R. Dautray and J.L. Lions, Mathematical analysis and numerical methods for science and technology. Vol. 2: Functional and variational methods. Springer-Verlag, Berlin (1988). [Google Scholar]
- M. Raffetto, Ill posed waveguide discontinuity problem involving metamaterials with impedance boundary conditions on the two ports. IET Sci. Measur. Technol. 1 (2007) 232–239. [CrossRef] [Google Scholar]
- G. Oliveri and M. Raffetto, A warning about metamaterials for users of frequency-domain numerical simulators. IEEE Trans. Antennas Propag. 56 (2008) 792–798. [CrossRef] [Google Scholar]
- P. Fernandes and M. Raffetto, Plain models of very simple waveguide junctions without any solution for very rich sets of excitations. IEEE Trans. Antennas Propag. 58 (2010) 1989–1996. [CrossRef] [Google Scholar]
- P. Fernandes and M. Raffetto, Realistic and correct models of impressed sources for time-harmonic electromagnetic boundary value problems involving metamaterials. Int. J. Model. Simul. Sci. Comput. (2013) 1–43. [Google Scholar]
- A.S. Bonnet–Ben Dhia, P. Ciarlet Jr. and C.M. Zwölf, Two- and three-field formulations for wave transmission between media with opposite sign dielectric constants. J. Comput. Appl. Math. 204 (2007) 408–417. [CrossRef] [Google Scholar]
- A.S. Bonnet–Ben Dhia, P. Ciarlet Jr. and C.M. Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234 (2010) 1912–1919. [CrossRef] [MathSciNet] [Google Scholar]
- S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38 (2000): 580–607. [CrossRef] [MathSciNet] [Google Scholar]
- P.G. Ciarlet, Basic error estimates for elliptic problems. Elsevier Science Publishers B. V., Amsterdam, North-Holland (1991). [Google Scholar]
- F. Kikuchi, On a discrete compactness property for the Nedelec finite elements. Journal of the Faculty of Science, University of Tokyo 36 (1989) 479–490. [Google Scholar]
- D. Boffi, Finite element approximation of eigenvalue problems. Acta Numerica (2010) 1–120. [Google Scholar]
- S.H. Christiansen and R. Winther, On variational eigenvalue approximation of semidefinite operators. IMA J. Numer. Anal. 33 (2013) 1–120. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuska, B. Szabo and I. Katz, The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981) 515–545. [CrossRef] [Google Scholar]
- D. Boffi, Approximation of eigenvalues in mixed form, discrete compactness property, and application to hp mixed finite elements. Comput. Methods Appl. Mech. Eng. 196 (2007) 3672–3681. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.