Free Access
Volume 49, Number 5, September-October 2015
Page(s) 1489 - 1509
Published online 09 September 2015
  1. R. Altmann, Index reduction for operator differential-algebraic equations in elastodynamics. Z. Angew. Math. Mech. (ZAMM) 93 (2013) 648–664. [CrossRef] [Google Scholar]
  2. R. Altmann and C. Carstensen, P1-nonconforming finite elements on triangulations into triangles and quadrilaterals. SIAM J. Numer. Anal. 50 (2012) 418–438. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Arnold, Half-explicit Runge-Kutta methods with explicit stages for differential-algebraic systems of index 2. BIT 38 (1998) 415–438. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Arnold, K. Strehmel and R. Weiner, Half-explicit Runge-Kutta methods for semi-explicit differential-algebraic equations of index 1. Numer. Math. 64 (1993) 409–431. [CrossRef] [MathSciNet] [Google Scholar]
  5. U. M. Ascher, H. Chin, L.R. Petzold and S. Reich, Stabilization of constrained mechanical systems with DAEs and invariant manifolds. Mech. Struct. Mach. 23 (1995) 135–157. [CrossRef] [Google Scholar]
  6. R. Becker and S. Mao, Quasi-optimality of adaptive nonconforming finite element methods for the Stokes equations. SIAM J. Numer. Anal. 49 (2011) 970–991. [CrossRef] [MathSciNet] [Google Scholar]
  7. C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 71–79. [CrossRef] [Google Scholar]
  8. D. Braess, Finite Elements − Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, New York, 3rd edition (2007). [Google Scholar]
  9. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. Springer-Verlag, New York (2008). [Google Scholar]
  10. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  11. S.L. Campbell and C.W. Gear, The index of general nonlinear DAEs. Numer. Math. 72 (1995) 173–196. [CrossRef] [MathSciNet] [Google Scholar]
  12. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  13. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973) 33–75. [Google Scholar]
  14. A. Gaul, Krypy. Public Git Repository, Commit: 110a1fb756fb. Iterative Solvers for Linear Systems. Available at [Google Scholar]
  15. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag. Berlin (1986). [Google Scholar]
  16. P.M. Gresho and R.L. Sani, Incompressible Flow and the Finite Element Method. Isothermal Laminar Flow, vol. 2. Wiley, Chichester (2000). [Google Scholar]
  17. E. Hairer, C. Lubich and M. Roche, The numerical solution of differential-algebraic systems by Runge-Kutta methods, vol. 1409 of Lect. Notes Math. Springer-Verlag, Berlin (1989). [Google Scholar]
  18. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edition. Springer-Verlag, Berlin (1996). [Google Scholar]
  19. J. Heiland, TayHoodMinExtForFlowEqns. Public Git Repository, Commit: 8eb641f21d. Solution of time-dependent 2D nonviscous flow with nonconforming minimal extension. Available at [Google Scholar]
  20. J. Heinrich and C. Vionnet, The penalty method for the Navier-Stokes equations. Arch. Comput. Method E. 2 (1995) 51–65. [CrossRef] [Google Scholar]
  21. M. Hinze, Optimal and instantaneous control of the instationary Navier-Stokes equations. Habilitationsschrift, Technische Universität Berlin, Institut für Mathematik (2000). [Google Scholar]
  22. R. Kouhia and R. Stenberg, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Engrg. 124 (1995) 195–212. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Kunkel and V. Mehrmann, Index reduction for differential-algebraic equations by minimal extension. Z. Angew. Math. Mech. 84 (2004) 579–597. [CrossRef] [Google Scholar]
  24. P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society (EMS), Zürich (2006). [Google Scholar]
  25. S. Le Borne and D. Cook II, Construction of a discrete divergence-free basis through orthogonal factorization in ℋ-arithmetic. Computing 81 (2007) 215–238. [Google Scholar]
  26. P. Lin, A sequential regularization method for time-dependent incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 34 (1997) 1051–1071. [CrossRef] [Google Scholar]
  27. V.H. Linh and V. Mehrmann, Efficient integration of matrix-valued non-stiff DAEs by half-explicit methods, Technische Universität Berlin, Germany (2011) Preprint 2011–16. [Google Scholar]
  28. A. Logg, K. Ølgaard, M. Rognes and G. Wells, Ffc: the fenics form compiler. In Automated Solution of Differential Equations by the Finite Element Method. Springer-Verlag, Berlin (2012) 227–238. [Google Scholar]
  29. G. Matthies and F. Schieweck, A multigrid method for incompressible flow problems using quasi divergence free functions. SIAM J. Sci. Comput. 28 (2006) 141–171. [CrossRef] [Google Scholar]
  30. G.-P. Ostermeyer, On Baumgarte stabilization for differential-algebraic equations. In Real-Time Integration Methods for Mechanical System Simulation. In vol. 69 of NATO ASI Series, edited by E. Haug and R. Deyo. Springer-Verlag, Berlin (1991) 193–207. [Google Scholar]
  31. C. Park and D. Sheen, P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 624–640. [CrossRef] [MathSciNet] [Google Scholar]
  32. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin (1994). [Google Scholar]
  33. R. Rannacher, On the numerical solution of the incompressible Navier-Stokes equations. Z. Angew. Math. Mech. 73 (1993) 203–216. [CrossRef] [Google Scholar]
  34. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Eqs. 8 (1992) 97–111. [Google Scholar]
  35. J. Shen, On error estimates of the penalty method for unsteady Navier-Stokes equations. SIAM J. Numer. Anal. 32 (1995) 386–403. [CrossRef] [MathSciNet] [Google Scholar]
  36. L. Tartar,An Introduction to Navier-Stokes Equation and Oceanography. Springer-Verlag, Berlin (2006). [Google Scholar]
  37. C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique. Int. J. Comput. Fluids 1 (1973) 73–100. [CrossRef] [MathSciNet] [Google Scholar]
  38. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland, Amsterdam (1977). [Google Scholar]
  39. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational Approach. Springer-Verlag, Berlin (1999). [Google Scholar]
  40. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175–182. [MathSciNet] [Google Scholar]
  41. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Stuttgart (1996). [Google Scholar]
  42. J. Weickert, Applications of the Theory of Differential-Algebraic Equations to Partial Differential Equations of Fluid Dynamics. Ph.D. thesis, TU Chemnitz, Fakultät Mathematik, Chemnitz (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you