Free Access
Volume 49, Number 5, September-October 2015
Page(s) 1463 - 1487
Published online 09 September 2015
  1. L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. I. Integral representation and Γ-convergence. J. Math. Pures Appl. 69 (1990) 285–305. [Google Scholar]
  2. L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization. J. Math. Pures Appl. 69 (1990) 307–333. [Google Scholar]
  3. L. Ambrosio and G. Dal Maso, On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal. 109 (1992) 76–97. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. Oxford University Press, New York (2000). [Google Scholar]
  5. G. Aubert and P. Kornprobst, A mathematical study of the relaxed optical flow problem in the space BV(Ω). SIAM J. Math. Anal. 30 (1999) 1282–1308. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Aubert, R. Deriche and P. Kornprobst, Computing optical flow via variational techniques. SIAM J. Appl. Math. 60 (1999) 156–182. [CrossRef] [Google Scholar]
  7. P. Aviles and Y. Giga, Variational integrals on mappings of bounded variation and their lower semicontinuity. Arch. Ration. Mech. Anal. 115 (1991) 201–255. [CrossRef] [Google Scholar]
  8. J. Bigun and G.H. Granlund, Optical flow based on the inertia matrix of the frequency domain. In Proc. of SSAB Symposium on Picture Processing: Lund University, Sweden (1988) 132–135. [Google Scholar]
  9. G. Bouchitté, I. Fonseca, G. Leoni and L. Mascarenhas, A global method for relaxation in W1,p and SBVp. Arch. Ration. Mech. Anal. 165 (2002) 187–242. [CrossRef] [Google Scholar]
  10. G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation. Arch. Ration. Mech. Anal. 145 (1998) 51–98. [CrossRef] [Google Scholar]
  11. T. Brox, A. Bruhn and J. Weickert, Variational motion segmentation with level sets. In Computer Vision – ECCV 2006. Edited by A.P. H. Bischof and A. Leonardis. Vol. 3951 of Lect. Notes Comput. Sci. Springer (2005) 471–483 [Google Scholar]
  12. C. Brune, H. Maurer and M. Wagner, Detection of intensity and motion edges within optical flow via multidimensional control. SIAM J. Img. Sci. 2 (2009) 1190–1210. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Carstensen and P. Plech Àč, Numerical solution of the double-well problem allowing for microstructure. Math. Comput. 66 (1997) 997–1026. [CrossRef] [MathSciNet] [Google Scholar]
  14. V. Caselles and B. Coll, Snakes in movement. SIAM J. Numer. Anal. 33 (1996) 2445–2456. [CrossRef] [Google Scholar]
  15. A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with an applications to imaging. J. Math. Imaging and Vision 40 (2011) 120–145. [Google Scholar]
  16. I. Cohen, Nonlinear variational method for optical flow computation. In Proc. of the 8th SCIA, June 93 (1993) 523–530. [Google Scholar]
  17. S. Conti, A. Garroni and A. Massaccesi, Modeling of dislocations and relaxation of functionals on 1-currents with discrete multiplicity. Calc. Var. Partial Differ. Eqs. (2015) DOI: 10.1007/s00526-015-0846-x. [Google Scholar]
  18. D. Cremers and C. Schnörr, Motion competition: Variational integration of motion segmentation and shape regularization. In Pattern Recognition Proc. of the DAGM, edited by L. Van Gool. Vol. 2449 of Lect. Notes in Comput. Sci. (2002) 472–480. [Google Scholar]
  19. D. Cremers and C. Schnörr, Statistical shape knowledge in variational motion segmentation. Image and Vision Computing 21 (2003) 77–86. [CrossRef] [Google Scholar]
  20. D. Cremers and S. Soatto, Motion competition: A variational framework for piecewise parametric motion segmentation. Int. J. Comput. Vision 62 (2005) 249–265. [CrossRef] [Google Scholar]
  21. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, New York (1989). [Google Scholar]
  22. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (1992). [Google Scholar]
  23. D. Fleet and Y. Weiss, Optical flow estimation. In Handbook of Mathematical Models in Computer Vision. Springer, New York (2006) 239–257. [Google Scholar]
  24. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω,Rp) for integrands f(x,u,u). Arch. Ration. Mech. Anal. 123 (1993) 1–49. [CrossRef] [MathSciNet] [Google Scholar]
  25. N. Fusco, M. Gori and F. Maggi, A remark on Serrin’s theorem. NoDEA Nonlin. Differ. Eqs. Appl. 13 (2006) 425–433. [CrossRef] [MathSciNet] [Google Scholar]
  26. C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964) 159–178. [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Guichard, A morphological, affine and galilean invariant scale–space for movies. IEEE Trans. Image Process. 7 (1998) 444–456. [CrossRef] [PubMed] [Google Scholar]
  28. W. Hinterberger, O. Scherzer, C. Schnörr and J. Weickert, Analysis of optical flow models in the framework of calculus of variations. Technical Report No. 8, University of Mannheim, Germany (2001). [Google Scholar]
  29. B.K.P. Horn and B.G. Schunck, Determining optical flow. Artificial Intelligence 17 (1981) 185–203. [Google Scholar]
  30. T.Y. Hou and X.H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet] [Google Scholar]
  31. K. Ito, An optimal optical flow, SIAM J. Control Optim. 44 (2005) 728–742. [CrossRef] [MathSciNet] [Google Scholar]
  32. C. Kanglin and D.A. Lorenz, Image sequence interpolation based on optical flow, segmentation and optimal control. Image Process., IEEE Trans. 21 (2012) 1020–1030. [Google Scholar]
  33. P. Kornprobst, R. Deriche and G. Aubert, Image sequence analysis via partial differential equations. J. Math. Imaging Vision 11 (1999) 5–26. [CrossRef] [MathSciNet] [Google Scholar]
  34. J. Kristensen and F. Rindler, Relaxation of signed integral functionals in BV. Calc. Var. Partial Differ. Equ. 37 (2010) 29–62. [CrossRef] [Google Scholar]
  35. L. Le Tarnec, F. Destrempes, G. Cloutier and D. Garcia, A proof of convergence of the Horn–Schunck optical flow algorithm in arbitrary dimension. SIAM J. Imaging Sci. 7 (2014) 277–293. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision. In Proc. of Seventh International Joint Conference on Artificial Intelligence. Vancouver, Canada (1981) 674–679. [Google Scholar]
  37. E. Memin and P. Perez, A Multigrid Approach for Hierarchical Motion Estimation. In Proc. of ICCV (1998) 933–938. [Google Scholar]
  38. H.H. Nagel and W. Enkelmann, An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8 (1986) 565–593. [CrossRef] [PubMed] [Google Scholar]
  39. H.H. Nagel and M. Otte, Optical flow estimation: Advances and comparisons. In Proc. of the 3rd European Conference on Computer Vision. Edited by J.-O. Eklundh. Vol. 800 of Lect. Notes Comput. Sci. Springer (1994) 51–70. [Google Scholar]
  40. P. Nesi, Variational approach to optical flow estimation managing discontinuities. Image and Vision Comput. 11 (1993) 419–439. [CrossRef] [Google Scholar]
  41. J.-M. Odobez and P. Bouthemy, Direct incremental model-based image motion segmentation for video analysis. Signal Process. 66 (1998) 143–155. [CrossRef] [Google Scholar]
  42. N. Papenberg, A. Bruhn, T. Brox, S. Didas and J. Weickert, Highly accurate optic flow computation with theoretically justified warping. Int. J. Computer Vision 67 (2006) 141–158. [CrossRef] [Google Scholar]
  43. N. Paragios and R. Deriche, Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intel. 22 (2000) 266–280. [Google Scholar]
  44. J.S. Perez, E. Meinhardt-Llopis and G. Facciolo, TV-L1 Optical flow estimation. Image Processing On Line 3 (2013) 137–150. [CrossRef] [Google Scholar]
  45. Y. Rathi, N. Vaswani, A. Tannenbaum and A. Yezzi, Particle filtering for geometric active contours with application to tracking moving and deforming objects. In CVPR IEEE Computer Society (2005) 1–8. [Google Scholar]
  46. Ju. G. Rešetnjak, General theorems on semicontinuity and convergence with functionals. Sibirsk. Mat. Ž. 8 (1967) 1051–1069. [MathSciNet] [Google Scholar]
  47. F. Rindler, Lower semicontinuity and Young measures in BV without Alberti’s rank-one theorem. Adv. Calc. Var. 5 (2012) 127–159. [CrossRef] [MathSciNet] [Google Scholar]
  48. L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259–268. [Google Scholar]
  49. M. Tristarelli, Computation of coherent optical flow by using multiple constraints. In Proc. of International Conference on Computer Vision. IEEE Computer Society Press (1995) 263–268. [Google Scholar]
  50. A. Wedel, T. Pock, C. Zach, H. Bischof and D. Cremers, An improved algorithm for TV-L1 optical flow. In Statistical and Geometrical Approaches to Visual Motion Analysis, edited by D. Cremers, B. Rosenhahn, A.L. Yuille and F.R. Schmidt. Vol. 5604 of Lect. Notes Comput. Sci. Springer Berlin Heidelberg (2009) 23–45. [Google Scholar]
  51. J. Weickert, A. Bruhn and C. Schnörr, Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International. J. Computer Vision 61 (2005) 211–231. [Google Scholar]
  52. J. Weickert and Ch. Schnörr, Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vision 14 (2001) 245–255. [CrossRef] [Google Scholar]
  53. E. Weinan, P.B. Ming and P.W. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Amer. Math. Soc. 18 (2005) 121–156. [CrossRef] [MathSciNet] [Google Scholar]
  54. J. Yuan, C. Schnörr and G. Steidl, Simultaneous higher-order optical flow estimation and decomposition. SIAM J. Sci. Comput. 29 (2007) 2283–2304. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you