Free Access
Issue |
ESAIM: M2AN
Volume 49, Number 5, September-October 2015
|
|
---|---|---|
Page(s) | 1285 - 1302 | |
DOI | https://doi.org/10.1051/m2an/2015012 | |
Published online | 18 August 2015 |
- L. Afraites, M. Dambrine and D. Kateb, On second order shape optimization methods for electrical impedance tomography. SIAM J. Control Optim. 47 (2008) 1556–1590. [Google Scholar]
- G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [CrossRef] [Google Scholar]
- F. Caubet, Instability of an inverse problem for the stationary Navier-Stokes equations. SIAM J. Control Optim. 51 (2013) 2949–2975. [CrossRef] [MathSciNet] [Google Scholar]
- F. Caubet and M. Dambrine, Stability of critical shapes for the drag minimization problem in Stokes flow. J. Math. Pures Appl. 100 (2013) 327–346. [CrossRef] [Google Scholar]
- A. Chernov and C. Schwab, First order k–th moment finite element analysis of nonlinear operator equations with stochastic data. Math. Comput. 82 (2013) 1859–1888. [CrossRef] [Google Scholar]
- M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. RACSAM, Rev. R. Acad. Cien. Serie A. Mat. 96 (2002) 95–121. [Google Scholar]
- M. Dambrine and D. Kateb, On the shape sensitivity of the first Dirichlet eigenvalue for two-phase problems. Appl. Math. Optim. 63 (2011) 45–74. [CrossRef] [MathSciNet] [Google Scholar]
- M. Dambrine and J. Lamboley, Stability in shape optimization with second variation. Preprint HAL-01073089 (2014). [Google Scholar]
- M.C. Delfour and J.-P. Zolésio, Shapes and geometries. Metrics, analysis, differential calculus, and optimization. Vol. 22 of Advances in Design and Control, 2nd edition. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). [Google Scholar]
- K. Eppler, Boundary integral representations of second derivatives in shape optimization. Discuss. Math. Differ. Incl. Control Optim. 20 (2000) 63–78. [CrossRef] [MathSciNet] [Google Scholar]
- K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cybernet. 34 (2005) 203–225. [MathSciNet] [Google Scholar]
- K. Eppler and H. Harbrecht, Second-order shape optimization using wavelet BEM. Optim. Methods Softw. 21 (2006) 135–153. [CrossRef] [Google Scholar]
- K. Eppler, S. Schmidt, V. Schulz and C. Ilic, Preconditioning the pressure tracking in fluid dynamics by shape Hessian information. J. Optim. Theory Appl. 141 (2009) 513–531. [CrossRef] [Google Scholar]
- H. Harbrecht, A Newton method for Bernoulli’s free boundary problem in three dimensions. Computing 82 (2008) 11–30. [CrossRef] [MathSciNet] [Google Scholar]
- H. Harbrecht, On output functionals of boundary value problems on stochastic domains. Math. Methods Appl. Sci. 33 (2010) 91–102. [Google Scholar]
- A. Henrot and M. Pierre, Variation et optimisation de formes. Une analyse géométrique. Vol. 48 of Math. Appl. Springer, Berlin (2005). [Google Scholar]
- H. Harbrecht, Second moment analysis for Robin boundary value problems on random domains, in Singular Phenomena and Scaling in Mathematical Models. Edited by M. Griebel. Springer, Berlin (2013) 361–382. [Google Scholar]
- H. Harbrecht, M. Peters and R. Schneider, On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math. 62 (2012) 428–440. [CrossRef] [MathSciNet] [Google Scholar]
- H. Harbrecht, M. Peters and M. Siebenmorgen, Combination technique based kth moment analysis of elliptic problems with random diffusion. J. Comput. Phys. 252 (2013) 128–141. [CrossRef] [Google Scholar]
- H. Harbrecht, R. Schneider and C. Schwab, Sparse second moment analysis for elliptic problems in stochastic domains. Numer. Math. 109 (2008) 385–414. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hintermüller and W. Ring, An inexact Newton-CG-type active contour approach for the minimization of the Mumford-Shah functional. J. Math. Imaging Vision 20 (2004) 19–42. [CrossRef] [MathSciNet] [Google Scholar]
- A. Novruzi and M. Pierre, Structure of shape derivatives. J. Evol. Equ. 2 (2002) 365–382. [CrossRef] [MathSciNet] [Google Scholar]
- A. Novruzi and J.R. Roche, Newton’s method in shape optimisation: a three-dimensional case. BIT (2000) 102–120. [Google Scholar]
- O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer, New York (1983). [Google Scholar]
- S. Schmidt and V. Schulz, Impulse response approximations of discrete shape Hessians with application in CFD. SIAM J. Control Optim. 48 (2009) 2562–2580. [CrossRef] [MathSciNet] [Google Scholar]
- V. Schulz, A Riemannian view on shape optimization. Found. Comput. Math. 14 (2014) 483–501. [CrossRef] [MathSciNet] [Google Scholar]
- C. Schwab and R.A. Todor, Karhunen–Loéve approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217 (2006) 100–122. [CrossRef] [MathSciNet] [Google Scholar]
- J. Simon, Second variations for domain optimization problems. In Control and estimation of distributed parameter systems. Edited by F. Kappel et al., Vol. 91 of Int. Ser. Numer. Math. Birkhäuser, Basel (1989) 361–378. [Google Scholar]
- J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization. Springer, Berlin (1992). [Google Scholar]
- J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). [Google Scholar]
- S. Yang, G. Stadler, R. Moser and Omar Ghattas, A shape Hessian-based boundary roughness analysis of Navier-Stokes flow. SIAM J. Appl. Math. 71 333–355. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.