Free Access
Issue |
ESAIM: M2AN
Volume 49, Number 5, September-October 2015
|
|
---|---|---|
Page(s) | 1261 - 1283 | |
DOI | https://doi.org/10.1051/m2an/2015010 | |
Published online | 18 August 2015 |
- R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd edition. Elsevier/Academic Press, Amsterdam (2003). [Google Scholar]
- Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005) 495–505,. [CrossRef] [Google Scholar]
- D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, The fractional-order governing equation of Lévy motion. Water Resour. Res. 36 (2000) 1413–1424. [CrossRef] [Google Scholar]
- Z. Cai and S. Kim, A finite element method using singular functions for the Poisson equation: corner singularities. SIAM J. Numer. Anal. 39 (2001) 286–299. [CrossRef] [Google Scholar]
- D. del-Castillo-Negrete, B.A. Carreras and V.E. Lynch, Front dynamics in reaction-diffusion systems with Levy flights. Phys. Rev. Lett. 91 (2003) 018302. [CrossRef] [PubMed] [Google Scholar]
- D. del-Castillo-Negrete, B.A. Carreras and V.E. Lynch, Nondiffusive transport in plasma turbulence: a fractional diffusion approach. Phys. Rev. Lett. 94 (2005) 065003. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- W.H. Deng and J.S. Hesthaven, Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM: M2AN 47 (2013) 1845–1864. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Douglas Jr., and T. Dupont, Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces. Numer. Math. 22 (1974) 99–109. [CrossRef] [MathSciNet] [Google Scholar]
- A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). [Google Scholar]
- V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Eqs. 22 (2006) 558–576. [CrossRef] [Google Scholar]
- B. Jin, R. Lazarov, J. Pasciak and W. Rundell, Variational formulation of problems involving fractional order differential operators. To appear in Math. Comput. (2015). [Google Scholar]
- B. Jin, R. Lazarov, J. Pasciak and Z. Zhou, Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52 (2014) 2272–2294. [CrossRef] [Google Scholar]
- A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006). [Google Scholar]
- R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. [NASA ADS] [CrossRef] [Google Scholar]
- S.G. Samko, A.A. Kilbas and O.I. Marichev. Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993). [Google Scholar]
- A.H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28 (1974) 959–962. [CrossRef] [MathSciNet] [Google Scholar]
- E. Sousa, Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228 (2009) 4038–4054. [CrossRef] [Google Scholar]
- C. Tadjeran and M.M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220 (2007) 813–823. [CrossRef] [Google Scholar]
- W. Tian, H. Zhou and W. Deng, A class of second-order finite difference approximations for solving space fractional diffusion equations. To appear in Math. Comput. (2015). [Google Scholar]
- H. Wang and D. Yang, Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51 (2013) 1088–1107. [CrossRef] [Google Scholar]
- K. Yoshida, Functional Analysis, 6th edition. Springer-Verlag, Berlin (1980). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.