Free Access
Issue
ESAIM: M2AN
Volume 49, Number 5, September-October 2015
Page(s) 1429 - 1450
DOI https://doi.org/10.1051/m2an/2015019
Published online 02 September 2015
  1. N. Ahmed and G. Matthies, Numerical study of SUPG and LPS methods combined with higher order variational time disretization schemes applied to time-dependent convection-diffusion-reaction equations. Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin (2014). Preprint 1948. [Google Scholar]
  2. N. Ahmed, G. Matthies, L. Tobiska and H. Xie, Discontinuous galerkin time stepping with local projection stabilization for transient convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg. 200 (2011) 1747–1756. [CrossRef] [MathSciNet] [Google Scholar]
  3. A.K. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation. Math. Comput. 52 (1989) 255–274. [CrossRef] [Google Scholar]
  4. R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173–199. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Becker and M. Braack, A two-level stabilization scheme for the Navier-Stokes equations. In Numer. Math. Advanced Appl. Springer, Berlin (2004) 123–130. [Google Scholar]
  6. P.B. Bochev, M.D. Gunzburger and J.N. Shadid, Stability of the SUPG finite element method for transient advection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 2301–2323. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2006) 2544–2566. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Burman, Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1114–1123. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Burman and M.A. Fernández, Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2508–2519. [CrossRef] [MathSciNet] [Google Scholar]
  10. P.G. Ciarlet, The finite element method for elliptic problems. Vol. 4 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam (1978). [Google Scholar]
  11. R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Engrg. 156 (1998) 185–210. [CrossRef] [MathSciNet] [Google Scholar]
  12. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational differential equations. Cambridge University Press, Cambridge (1996). [Google Scholar]
  13. K. Eriksson, C. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO: M2AN 19 (1985) 611–643. [Google Scholar]
  14. M.-C. Hsu, Y. Bazilevs, V.M. Calo, T.E. Tezduyar and T.J.R. Hughes, Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput. Methods Appl. Mech. Engrg. 199 (2010) 828–840. [CrossRef] [MathSciNet] [Google Scholar]
  15. T.J.R. Hughes and A.N. Brooks, A multidimensional upwind scheme with no crosswind diffusion. In Finite element methods for convection dominated flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979). Vol. 34 of AMD. Amer. Soc. Mech. Engrs. (ASME). New York (1979) 19–35. [Google Scholar]
  16. S. Hussain, F. Schieweck and S. Turek, Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation. J. Numer. Math. 19 (2011) 41–61. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Hussain, F. Schieweck and S. Turek, A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations. Open Numer. Methods J. 4 (2012) 35–45. [CrossRef] [MathSciNet] [Google Scholar]
  18. V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I. A review. Comput. Methods Appl. Mech. Engrg. 196 (2007) 2197–2215. [CrossRef] [MathSciNet] [Google Scholar]
  19. V. John and P. Knobloch, On the performance of SOLD methods for convection-diffusion problems with interior layers. Int. J. Comput. Sci. Math. 1 (2007) 245–258. [CrossRef] [MathSciNet] [Google Scholar]
  20. V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. II. Analysis for P1 and Q1 finite elements. Comput. Methods Appl. Mech. Engrg. 197 (2008) 1997–2014. [CrossRef] [MathSciNet] [Google Scholar]
  21. V. John and G. Matthies, MooNMD − a program package based on mapped finite element methods. Comput. Vis. Sci. 6 (2004) 163–169. [CrossRef] [Google Scholar]
  22. V. John and J. Novo, Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations. SIAM J. Numer. Anal. 49 (2011) 1149–1176. [CrossRef] [Google Scholar]
  23. V. John and E. Schmeyer, Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Engrg. 198 (2008) 475–494. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Knobloch, On the application of local projection methods to convection-diffusion-reaction problems. In BAIL 2008 – boundary and interior layers. Vol. 69 of Lect. Notes Comput. Sci. Eng. Springer, Berlin (2009) 183–194. [Google Scholar]
  25. P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal. 48 (2010) 659–680. [CrossRef] [Google Scholar]
  26. G. Lube and D. Weiss, Stabilized finite element methods for singularly perturbed parabolic problems. Appl. Numer. Math. 17 (1995) 431–459. [CrossRef] [Google Scholar]
  27. G. Matthies and F. Schieweck, Higher order variational time discretizations for nonlinear systems of ordinary differential equations. Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2011). Preprint 23/2011. [Google Scholar]
  28. G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM: M2AN 41 (2007) 713–742. [CrossRef] [EDP Sciences] [Google Scholar]
  29. G. Matthies, P. Skrzypacz and L. Tobiska, Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. Electron. Trans. Numer. Anal. 32 (2008) 90–105. [MathSciNet] [Google Scholar]
  30. W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientic Laboratory (1973). [Google Scholar]
  31. H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems. In vol. 24 of Springer Ser. Comput. Math. Springer-Verlag, Berlin, 2nd edition (2008). [Google Scholar]
  32. F. Schieweck. A-stable discontinuous Galerkin-Petrov time discretization of higher order. J. Numer. Math. 18 (2010) 25–57. [CrossRef] [MathSciNet] [Google Scholar]
  33. D. Schötzau and C. Schwab, An hp a priori error analysis of the DG time-stepping method for initial value problems. Calcolo, 37 (2000) 207–232. [CrossRef] [MathSciNet] [Google Scholar]
  34. D. Schötzau and C. Schwab, hp-discontinuous Galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 1121–1126. [CrossRef] [MathSciNet] [Google Scholar]
  35. V. Thomée, Galerkin finite element methods for parabolic problems. In vol. 25 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you