Free Access
Issue
ESAIM: M2AN
Volume 49, Number 5, September-October 2015
Page(s) 1331 - 1365
DOI https://doi.org/10.1051/m2an/2015014
Published online 18 August 2015
  1. M. Bécoulet, F. Orain, G.T.A. Huijsmans, S. Pamela, P. Cahyna, M. Hoelzl, X. Garbet, E. Franck, E. Sonnendrücker, G. Dif-Pradalier, C. Passeron, G. Latu, J. Morales, E. Nardon, A. Fil, B. Nkonga, A. Ratnani and V. Grandgirard, Mechanism of Edge Localized Mode mitigation by Resonant Magnetic Perturbations. Phys. Rev. Lett. 113 (2014) 115001. [CrossRef] [PubMed] [Google Scholar]
  2. P. Cahyna, M. Becoulet, G.T.A. Huijsmans, F. Orain, J. Morales, A. Kirk, A.J. Thornton, S. Pamela, R. Panek and M. Hoelzl, Modelling of spatial structure of divertor footprints caused by edge-localized modes mitigated by magnetic perturbations. Nucl. Fus. (submitted). [Google Scholar]
  3. L. Chacón, Scalable parallel implicit solver for 3D magnetohydrodynamics. J. Phys.: Conf. Ser. 125 (2008) 012041. [CrossRef] [Google Scholar]
  4. L. Chacón, An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional viscoresistive magnetohydrodynamics. Phys. Plasmas 15 (2008) 056103. [NASA ADS] [CrossRef] [Google Scholar]
  5. L. Chacón and D.A. Knoll, A 2D high β hall MHD implicit nonlinear solver. J. Comput. Phys. 188 (2003) 573–592. [CrossRef] [Google Scholar]
  6. L. Chacón, D.A. Knoll and J.M. Finn, An implicit, nonlinear reduced resistive MHD solver. J. Comput. Phys. 178 (2002) 15–36. [CrossRef] [Google Scholar]
  7. R.S. Dembo, S.C. Eisenstat and T. Steihaug, Inexact Newton methods. SIAM J. Numer. Anal. 19 (1982) 400-408. [CrossRef] [Google Scholar]
  8. E. Deriaz, B. Després, G. Faccanoni, K.P. Gostaf, L.M. Imbert, G. Sadaka and R. Sart, Magnetic equations with FreeFem ++: the Grad−Shafranov equation and the Current Hole. ESAIM: Proc. 32 (2011) 149–162. [CrossRef] [EDP Sciences] [Google Scholar]
  9. B. Després and R. Sart, Reduced resistive MHD in Tokamaks with general density. ESAIM: M2AN 46 (2012) 1081–1106. [CrossRef] [EDP Sciences] [Google Scholar]
  10. B. Després and R. Sart, Derivation of hierarchies of reduced MHD models in Tokamaks, submitted to Archive of Rational Mechanics and Analysis. Preprint: http://hal.archives-ouvertes.fr/docs/00/79/64/25/PDF/mhdtout12.pdf [Google Scholar]
  11. S.C. Eisenstat and H.F. Walker, Globally convergent Inexact Newton methods. SIAM J. Sci. Stat. Comput. 6 (1985) 793–832. [CrossRef] [Google Scholar]
  12. A. Fil, E. Nardon, M. Bécoulet, G. Dif-Pradalier, V. Grandgirard, R. Guirlet, M. Hoelzl, G.T.A. Huijsmans, G. Latu, M. Lehnen, P. Monier-Garbet, F. Orain, C. Passeron, B. Pǵourié, C. Reux, F. Saint-Laurent and P. Tamain, Modeling of disruption mitigation by massive gas injection. 41st EPS Conference on Plasma Physics. Berlin, Germany (2014), P1.045. [Google Scholar]
  13. R. Freund, G.H. Golub and N. Nachtigal, Iterative solution of linear systems. Acta Numerica (1992) 57–100. [Google Scholar]
  14. M. Hoelzl, S. Günter, R.P. Wenninger, W.-C. Mueller, G.T.A. Huysmans, K. Lackner and I. Krebs, ASDEX Upgrade Team. Reduced-MHD Simulations of Toroidally and Poloidally Localized ELMs. Phys. Plasmas. 19 (2012) 082505. [CrossRef] [Google Scholar]
  15. G.T.A. Huysmans and O. Czarny, MHD stability in X-point geometry: simulation of ELMs. Nucl. Fusion 47 (2007) 659–666. [CrossRef] [Google Scholar]
  16. M. Hoelzl, G.T.A. Huijsmans, P. Merkel, C. Atanasiu, K. Lackner, E. Nardon, K. Aleynikova, F. Liu, E. Strumberger, R. McAdams, I. Chapman and A. Fil, Non-Linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents. J. Phys.: Conf. Ser. 561 (2014) 012011. [CrossRef] [Google Scholar]
  17. G.T.A. Huijsmans, F. Liu, A. Loarte, S. Futatani, F. Koechl, M. Hoelzl, A. Garofalo,W. Salomon, P.B. Snyder, E. Nardon, F. Orain and M. Bécoulet, Non-linear MHD Simulations for ITER. 25th Fusion Energy Conference (FEC 2014). Saint Petersburg. Russia (2014) TH/6-1Ra. [Google Scholar]
  18. G.T.A. Huysmans and O. Czarny, Bézier surfaces and finite elements for MHD simulations. J. Comput. Phys. Arch. 227 (2008) 7423–7445. [CrossRef] [Google Scholar]
  19. I. Krebs, M. Hoelzl, K. Lackner, S. Günter, Nonlinear excitation of low-n harmonics in reduced MHD simulations of edge-localized modes. Phys. Plasmas 20 (2013) 082506. [CrossRef] [Google Scholar]
  20. S.E. Kruger, C.C. Hegna and J.D. Callen, Generalized reduced magnetohydrodynamic equations. Phys. Plasmas 5 (1998). [Google Scholar]
  21. F. Liu, G.T.A. Huijsmans, A. Loarte, A.M. Garofalo, W.M. Solomon and M. Hoelzl, Nonlinear MHD simulations of QH-mode plasmas in DIII-D. 41st EPS Conference on Plasma Physics. Berlin, Germany (2014) O5.135. [Google Scholar]
  22. S.K. Malapaka, B. Després and R. Sart, Unconditionally stable numerical simulations of a new generalized reduced resistive magnetohydrodynamics model. Int. J. Numer. Methods in Fluids 74 (2014) 231–249. [CrossRef] [Google Scholar]
  23. M. Martin, Modélisations fluides pour les plasmas de fusion: approximation par éléments finis C1 de Bell. Ph.D. thesis, University of Nice (2013). [Google Scholar]
  24. F. Murphy, G.H. Golub and A.J. Wathen, A note on preconditioning for indefinite linear systems. Report (1999). [Google Scholar]
  25. F. Orain, M. Bécoulet, J. Morales, G. Dif-Pradalier, X. Garbet, E. Nardon, C. Passeron, G. Latu, A. Fil, G.T.A. Huijsmans, M. Hoelzl, S. Pamela and P. Cahyna, Non-linear MHD modeling of multi-ELM cycles and mitigation by RMPs. Plasma Phys. Control. Fusion 57 (2014) 014020. [CrossRef] [Google Scholar]
  26. S.J.P. Pamela, G.T.A. Huysmans, A. Kirk, I.T. Chapman, M. Becoulet, F. Orain and M. Hoelzl and the MAST Team, Influence of Diamagnetic Effects on Resistive MHD Simulations of RMPs in MAST (In preparation). [Google Scholar]
  27. B. Phillip, L. Chacón and M. Pernice, Implicit adaptive mesh refinement for 2D reduced resistive Magnetohydrodynamics. J. Comput. Phys. 227 (2008). [Google Scholar]
  28. D.D. Schnack, D.C. Barnes, D.P. Brennan, C.C. Hegna, E. Held, C.C. Kim, S.E. Kruger, A.Y. Pankin and C.R. Sovinec, Computational modeling of fully ionized magnetized plasmas using the fluid approxmation. Phys. Plasmas 13 (2006) 058103. [CrossRef] [Google Scholar]
  29. H. R. Strauss, Reduced MHD in nearly potential magnetic fields. J. Plasma Phys. 57 (1997) 83–87. [CrossRef] [Google Scholar]
  30. P.B. Snyder, H.R. Wilson, J.R. Ferron, L.L. Lao, A.W. Leonard, T.H. Osborne, A.D. Turnbull, D. Mossessian, M. Murakami and X.Q. Xu, Edge localized modes and the pedestal: A model based on coupled peeling ballooning modes. Phys. Plasmas 9 (2002) 2037–2043. [CrossRef] [Google Scholar]
  31. H. Zohm, Edge localized modes (ELMs). Plasma Phys. Control. Fusion 38 (1996) 105. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you