Free Access
Volume 49, Number 5, September-October 2015
Page(s) 1367 - 1398
Published online 19 August 2015
  1. P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.M. Cascon, C. Kreuzer, R.H. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. [Google Scholar]
  3. A. Chkifa, A. Cohen, R. DeVore and C. Schwab, Adaptive algorithms for sparse polynomial approximation of parametric and stochastic elliptic pdes. ESAIM: M2AN 47 (2013) 253–280. [CrossRef] [EDP Sciences] [Google Scholar]
  4. A. Chkifa, A. Cohen and C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric pdes. J. Found. Comput. Math. 14 (2014) 601–633. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Cohen, R. Devore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. 9 (2011) 11–47. [Google Scholar]
  6. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Eigel, C. Gittelson, C. Schwab and E. Zander, Adaptive stochastic Galerkin FEM. Comput. Methods Appl. Mech. Engrg. 270 (2014) 247–269. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Eigel and E. Zander, ALEA - A Python Framework for Spectral Methods and Low-Rank Approximations in Uncertainty Quantification. Available at: [Google Scholar]
  9. W. Gautschi, Orthogonal polynomials: computation and approximation. Numer. Math. Sci. Comput. Oxford University Press, New York (2004). [Google Scholar]
  10. R.G. Ghanem and P.D. Spanos, Stochastic finite elements: a spectral approach. Springer-Verlag, New York (1991). [Google Scholar]
  11. C.J. Gittelson, R. Andreev and Ch. Schwab, Optimality of adaptive Galerkin methods for random parabolic partial differential equations. J. Comput. Appl. Math. 263 (2014) 189–201. [CrossRef] [Google Scholar]
  12. C.J. Gittelson, Stochastic Galerkin approximation of operator equations with infinite dimensional noise. Tech. Report 2011-10. Seminar for Applied Mathematics, ETH Zürich (2011). [Google Scholar]
  13. C.J. Gittelson, Convergence rates of multilevel and sparse tensor approximations for a random elliptic PDE. SIAM J. Numer. Anal. 51 (2013) 2426–2447. [CrossRef] [Google Scholar]
  14. C.J. Gittelson, High-order methods as an alternative to using sparse tensor products for stochastic galerkin FEM. Comput. Math. Appl. 67 (2014) 888-898. [CrossRef] [Google Scholar]
  15. F.Y. Kuo, C. Schwab and I.H. Sloan, Quasi-monte carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012) 3351–3374. [CrossRef] [Google Scholar]
  16. O.P. Le Maître and O.M. Knio, Spectral methods for uncertainty quantification, Scientific Computation. Springer, New York (2010).With applications to computational fluid dynamics. [Google Scholar]
  17. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488. [CrossRef] [MathSciNet] [Google Scholar]
  18. R.H. Nochetto, K.G. Siebert and A. Veeser, Theory of adaptive finite element methods: an introduction, in Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin (2009) 409–542. [Google Scholar]
  19. C. Schillings and Ch. Schwab Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Probl. 29 (2013) 065011. [Google Scholar]
  20. R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. (2008) 227–241. [Google Scholar]
  21. R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner Verlag and J. Wiley, Stuttgart (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you