Free Access
Volume 49, Number 5, September-October 2015
Page(s) 1239 - 1260
Published online 16 July 2015
  1. A. Alonso and A. Valli, A domain decomposition approach for heterogenous time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 147 (1997) 97–112. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Assous, P. Degond, E. Heintzé, P.A. Raviart and J. Segré, On a finite element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109 (1993) 222–237. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Assous, P. Degond and J. Segré, Numerical approximation of the Maxwell equations in inhomogeneous media by a P1 conforming finite element method. J. Comput. Phys. 128 (1996) 363–380. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Assous, J. Segré and E. Sonnendrücker, A domain decomposition method for the parallelization of a three-dimensional Maxwell solver based on a constrained formulation. Math. Comput. Simul. 81 (2011) 2371–2388. [CrossRef] [Google Scholar]
  5. M.Sh. Birman and M.Z. Solomyak, L2-Theory of the Maxwell operator in arbitrary domains, Russian Math. Surveys 42 (1987) 75–96. [CrossRef] [Google Scholar]
  6. A. Bossavit, Electromagnétisme, en vue de la modélisation. Vol. 14 of Math. Appl. Springer-Verlag (1993). (in French) [Google Scholar]
  7. M. Brambilla and A. Cardinali, Eikonal description of H.F. waves in toroidal plasmas. Plasma Phys. 24 (1982) 1187–1218. [CrossRef] [MathSciNet] [Google Scholar]
  8. H. Brezis, Analyse fonctionnelle. Masson, Paris (1983). English version: Functional analysis, Sobolev spaces and Partial Differential Equations. Springer-Verlag (2011). [Google Scholar]
  9. A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. Part I: An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations.Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Meth. Appl. Sci. 24 (2001) 31–48. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Ciarlet Jr., Augmented formulations for solving Maxwell equations. Comput. Methods Appl. Mech. Engrg. 194 (2005) 559–586. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Ciarlet Jr. and J. Zou, Finite element convergence for the Darwin model to Maxwell’s equations. RAIRO Modél. Math. Anal. Num. 31 (1997) 213–250. [Google Scholar]
  13. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221–276. [CrossRef] [MathSciNet] [Google Scholar]
  14. B. Després, L.M. Imbert-Gérard and R. Weder, Hybrid resonance of Maxwell’s equations in slab geometry. J. Math. Pures Appl. 101 (2014) 623–659. [CrossRef] [Google Scholar]
  15. B. Després, P. Joly and J.E. Roberts, A domain decomposition method for the harmonic Maxwell equations, in Iterative methods in linear algebra, edited by R. Beauwens and P. de Groen. North-Holland, Amsterdam (1992) 475–484. [Google Scholar]
  16. O.G. Ernst and M.J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, in Numerical analysis of multiscale problems, edited by I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl. Vol. 83 of Lect. Notes Comput. Sci. Eng. Springer-Verlag, Heidelberg (2012) 325–363. [Google Scholar]
  17. R.J. Goldston and P.H. Rutherford, Introduction to plasma physics. Institute of Physics Publishing, Bristol (1995). [Google Scholar]
  18. T. Hattori, Décomposition de domaine pour la simulation Full-Wave dans un plasma froid. Ph.D. thesis, Université de Lorraine (2014). (in French) [Google Scholar]
  19. L. Hörmander, The Analysis of Linear Partial Differential Operators. Springer-Verlag (1984). [Google Scholar]
  20. J.D. Jackson, Classical electrodynamics. John Wiley & Sons, New York, London, Sydney (1962). [Google Scholar]
  21. L.D. Landau, On the vibrations of the electronic plasma. J. Phys. (U.S.S.R) 10 (1946) 25–34. Published again in Collected papers of L.D. Landau. Pergamon Press (1965) 445–460. [Google Scholar]
  22. T.P.A. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Springer-Verlag (2008). [Google Scholar]
  23. Y. Peysson, J.R. Roche, P. Bertrand, J.H. Chatenet, C. Kirsch, A. Mokrani and S. Labrunie, Mixed augmented formulation (MAVF) for lower hybrid full-wave calculations, in AIP Conf. Proc., vol. 1187. The 18th Topical Conference on Radio Frequency Power in Plasmas, edited by V. Bobkov, J.M. Noterdaeme (2009) 633–636. [Google Scholar]
  24. Y. Peysson, E. Sébelin, X. Litaudon, D. Moreau, J.C. Miellou, M.M. Shoucri and I.P. Shkarofsky, Full Wave modelling of lower hybrid current drive in tokamaks. Nuclear Fusion 38 (1998) 939–944. [CrossRef] [Google Scholar]
  25. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications (1999). [Google Scholar]
  26. E. Sébelin, Développement des méthodes numériques pour la résolution de la propagation et de l’absorption de l’onde hybride dans les tokamaks. Ph.D. thesis, Université de Franche-Comté (1997). (In French) [Google Scholar]
  27. E. Sébelin, J.C. Miellou, O. Lafitte, Y. Peysson, X. Litaudon and D. Moreau, Uniqueness and Existence Result Around Lax–Milgram Lemma: Application to Electromagnetic Waves Propagation in Tokamak Plasmas. Technical Report EUR-CEA-FC-1609 (Euratom-CEA Federation), online: [Google Scholar]
  28. T.H. Stix, Waves in plasmas. American Institute of Physics, New York (1992). [Google Scholar]
  29. A. Toselli, Overlapping Schwarz methods for Maxwell’s equations in three dimensions. Numer. Math. 86 (2000) 733–752. [CrossRef] [MathSciNet] [Google Scholar]
  30. C. Weber, A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2 (1980) 12–25. [Google Scholar]
  31. J.C. Wright, P.T. Bonoli, M. Brambilla, F. Meo, E. D’Azevedo, D.B. Batchelor, E.F. Jaeger, L.A. Berry, C.K. Phillips and A. Pletzer, Calculations of fast wave mode conversion and lower hybrid propagation in tokamaks. Phys. Plasmas 11 (2004) 2473–2479. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you