Free Access
Issue |
ESAIM: M2AN
Volume 49, Number 5, September-October 2015
|
|
---|---|---|
Page(s) | 1525 - 1547 | |
DOI | https://doi.org/10.1051/m2an/2015027 | |
Published online | 15 September 2015 |
- M. Bause and K. Schwegler, Higher order finite element approximation of systems of convection-diffusion-reaction equations with small diffusion. J. Comput. Appl. Math. 246 (2013) 52–64. [CrossRef] [Google Scholar]
- Z. Cen, Parameter-uniform finite difference scheme for a system of coupled singularly perturbed convection-diffusion equations. J. Syst. Sci. Complex. 18 (2005) 498–510. [MathSciNet] [Google Scholar]
- Z. Cen, Parameter-uniform finite difference scheme for a system of coupled singularly perturbed convection-diffusion equations. Int. J. Comput. Math. 82 (2005) 177–192. [CrossRef] [Google Scholar]
- C. Clavero and J.L. Gracia, An improved uniformly convergent scheme in space for 1D parabolic reaction-diffusion systems. Appl. Math. Comput. 243 (2014) 57–73. [CrossRef] [Google Scholar]
- R.G. Durán and A.L. Lombardi, Finite element approximation of convection-diffusion problems using graded meshes. Appl. Numer. Math. 56 (2006) 1314–1325. [CrossRef] [Google Scholar]
- K. Kang and S. Kim, Global pointwise estimates for Green’s matrix of second order elliptic systems. J. Differ. Eqs. 249 (2010) 2643–2662. [CrossRef] [Google Scholar]
- R.B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comput. 32 (1978) 1025–1039. [CrossRef] [Google Scholar]
- T. Linß, Analysis of an upwind finite-difference scheme for a system of coupled singularly perturbed convection-diffusion equations. Computing 79 (2007) 23–32. [CrossRef] [MathSciNet] [Google Scholar]
- T. Linß, Analysis of a FEM for a coupled system of singularly perturbed reaction-diffusion equations. Numer. Algor. 50 (2009) 283–291. [CrossRef] [Google Scholar]
- T. Linß, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, in vol. 1985 of Lect. Notes Math. Springer, Berlin (2010). [Google Scholar]
- T. Linß and N. Madden, A finite element analysis of a coupled system of singularly perturbed reaction-diffusion equations. Appl. Math. Comput. 148 (2004) 869–880. [CrossRef] [Google Scholar]
- T. Linß and M. Stynes, Numerical solution of systems of singularly perturbed differential equations. Comput. Meth. Appl. Math. 9 (2009) 165–191. [Google Scholar]
- N. Madden and M. Stynes, A uniform convergent numerical method for a coupled system of two singularly perturbed linear reaction-diffusion problems. IMA J. Numer. Anal. 23 (2003) 627–644. [CrossRef] [MathSciNet] [Google Scholar]
- S. Matthews, E. O’Riordan and G. I. Shishkin, A numerical method for a system of singularly perturbed reaction-diffusion equations. J. Comput. Appl. Math. 145 (2002) 151–166. [CrossRef] [Google Scholar]
- J. M. Melenk, C. Xenophontos and L. Oberbroeckling, Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales. Adv. Comput. Math. 39 (2013) 367–394. [CrossRef] [Google Scholar]
- H.-G. Roos, Robust numerical methods for singularly perturbed differential equations: a survey covering 2008–2012. ISRN Appl. Math. (2012). Doi: 10.5402/2012/379547. [Google Scholar]
- H.-G. Roos and C. Reibiger, Numerical analysis of a system of singularly perturbed convection-diffusion equations related to optimal control. Numer. Math.: Theory Meth. Appl. 4 (2011) 562–575. [Google Scholar]
- H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008). [Google Scholar]
- G.I. Shishkin, Grid approximations of singularly perturbed systems for parabolic convection-diffusion equations with counterflow. Sib. Zh. Vychisl. Mat. 1 (1998) 281–297. [MathSciNet] [Google Scholar]
- G.I. Shishkin, Approximation of elliptic convection-diffusion equations with parabolic boundary layers. Zh. Vychisl. Mat. Mat. Fiz. 40 (2000) 1648–1661. [Google Scholar]
- A. Tamilselvana and N. Ramanujam, A parameter uniform numerical method for a system of singularly perturbed convection-diffusion equations with discontinuous convection coefficients. Int. J. Comput. Math. 87 (2010) 1374–1388. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.