Volume 49, Number 6, November-December 2015
Special Issue - Optimal Transport
Page(s) 1717 - 1744
Published online 05 November 2015
  1. L. Ambrosio and N. Gigli, A user’s guide to optimal transport, in Modelling and Optimisation of Flows on Networks. Springer Berlin Heidelberg (2013) 1–155. [Google Scholar]
  2. S. Agenent, S. Haker and A. Tannenbaum, Minimizing flows for the Monge-Kantorovich problem. SIAM J. Math. Anal. 35 (2003) 61–97. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.-D. Benamou, Numerical resolution of an “unbalanced” mass transfer problem. ESAIM: M2AN 37 (2003) 851–868. [CrossRef] [EDP Sciences] [Google Scholar]
  4. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution of the Monge-Katorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.-D. Benamou and Y. Brenier, Mixed L2-Wasserstein optimal mapping between prescribed density functions. J. Optim. Theory Appl. 111 (2001) 255–271. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.-D. Benamou, Y. Brenier and K. Guittet, Numerical Analysis of a Multi-Phasic Mass Transport Problem. Int. J. Numer. Meth. Fluids 40 (2002) 21–30. [CrossRef] [Google Scholar]
  7. J.-D. Benamou, B. Froese and A. Oberman, Numerical solution of the second boundary value problem for the Elliptic Monge−Ampère equation. HAL preprint on (2012). [Google Scholar]
  8. J.-D. Benamou, B. Froese, A. Oberman, Numerical Solution of the Optimal Transportation Problem via viscosity solutions for the Monge−Ampère equation. Preprint arXiv:1208.4873 (2012). [Google Scholar]
  9. E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge−Ampère type. Comput. Meth. Appl. Mech. Engrg. 195 (2006) 1344–1386. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions. J. Math. Pures Appl. 94 (2010) 107–130. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems. Stud. Math. Appl. North-Holland, Amsterdam (1983) [Google Scholar]
  12. K. Guittet, Extended Kantorovich norms: a tool for optimization. INRIA RR-4402 (2002) [Google Scholar]
  13. L.G. Hanin, An extension of the Kantorovich norm. Contemp. Math. 226 (1999) 13–130. [CrossRef] [Google Scholar]
  14. L.V. Kantorovich and G.Sh. Rubinstein, On a space of completely additive functions. Vestnik Leningrad. Univ 13 (1958) 52–59. [MathSciNet] [Google Scholar]
  15. G. Loeper and F. Rapetti, Numerical solution of the Monge-Ampre equation by a Newton’s algorithm. C. R. Math. Acad. Sci. Paris 340 (2005) 319–324. [CrossRef] [MathSciNet] [Google Scholar]
  16. R. McCann, Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589–608. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Peyre, Non-asymptotic equivalence between W2 distance and H-1 norm. Preprint arXiv:1104.4631 (2011). [Google Scholar]
  18. B. Piccoli and F. Rossi, A generalized Benamou−Brenier formula for mass-varying densities. Preprint arXiv:1304.7014 (2014). [Google Scholar]
  19. B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport equations with source. Arc. Rational Mech. Anal. 211 (2014) 335–358. [Google Scholar]
  20. C. Villani, Topics in optimal transportation. In vol. 50 of Grad. Stud. Math. AMS (2003). [Google Scholar]
  21. M. Miller, A. Trouve and L. Younes, Geodesic shooting for computational anatomy. J. Math. Imaging Vision 24 (2006) 209–228. [CrossRef] [MathSciNet] [Google Scholar]
  22. T. Vercauteren, X. Pennec and A. Perchant and N. Ayache, Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage, Mathematics in Brain Imaging 45 (2009) S61–S72. [Google Scholar]
  23. M. Cullen and W. Gangbo and G. Pisante, The Semigeostrophic Equations Discretized in reference and dual variables. Arch. Ration. Mech. Anal. 185 (2007) 341–363. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you