Issue
ESAIM: M2AN
Volume 49, Number 6, November-December 2015
Special Issue - Optimal Transport
Page(s) 1693 - 1715
DOI https://doi.org/10.1051/m2an/2015055
Published online 05 November 2015
  1. L. Ambrosio and N. Gigli, A users guide to optimal transport, Modelling and Optimisation of Flows on Networks. Lect. Notes Math. (2013) 1–155. [Google Scholar]
  2. N. Amenta, S. Choi and G. Rote, Incremental constructions con brio, in Proc. of the Nineteenth Annual Symposium on Computational Geometry, SCG’03, New York, NY, USA. ACM (2003) 211–219. [Google Scholar]
  3. F. Aurenhammer, Power diagrams: Properties, algorithms and applications. SIAM J. Comput. 16 (1987) 78–96. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Aurenhammer, F. Hoffmann and B. Aronov, Minkowski-type theorems and least-squares partitioning, in Proc. of Symposium on Computational Geometry (1992) 350–357. [Google Scholar]
  5. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.-D. Benamou, G. Carlier, Q. Mérigot and E. Oudet, Discretization of functionals involving the monge-ampère operator. Preprint arXiv:1408.4536 (2014). [Google Scholar]
  7. N. Bonneel, M. van de Panne, S. Paris and W. Heidrich, Displacement interpolation using lagrangian mass transport. ACM Trans. Graph. 30 (2011) 158. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  8. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44 (1991) 375–417. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  9. R. Burkard, M. Dell’Amico and S. Martello, Assignment Problems. SIAM (2009). [Google Scholar]
  10. L. Caffarelli, The Monge-Ampère Equation and Optimal Transportation, an Elementary Review. Optimal Transportation and Applications (Martina Franca, 2001). Lect. Notes Math. (2003) 1–10. [Google Scholar]
  11. G. De Philippis and A. Figalli, Partial Regularity for Optimal Transport Maps. Publications mathématiques de l’IHES (2014) 1–32. [Google Scholar]
  12. C. Delage and O. Devillers, Spatial sorting, in CGAL User and Reference Manual. CGAL Editorial Board 3.9 edition (2011). [Google Scholar]
  13. Q. Du, V. Faber and M. Gunzburger, Centroidal voronoi tessellations: Applications and algorithms. SIAM Rev. 41 (1999) 637–676. [CrossRef] [MathSciNet] [Google Scholar]
  14. Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41 (1999) 637–676. [CrossRef] [MathSciNet] [Google Scholar]
  15. H. Edelsbrunner and E. P. Mücke, Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. Acm Trans. Graph 9 (1990) 66–104. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  16. X. Gu, F. Luo, J. Sun and S.-T. Yau, Variational principles for minkowski type problems, discrete optimal transport, and discrete Monge-Ampère equations. Preprint arXiv:1302.5472 (2013). [Google Scholar]
  17. M. Iri, K. Murota and T. Ohya, A fast Voronoi-diagram algorithm with applications to geographical optimization problems, in Proc. of the IFIP (1984) 273–288. [Google Scholar]
  18. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the fokker-planck equation. SIAM J. Math. Anal. 29 (1999) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Lévy, Restricted voronoi diagrams for (re)-meshing surfaces and volumes, in Curves and Surfaces conference proceedings (2014). [Google Scholar]
  20. B. Lévy and Y. Liu, Lp Centroidal Voronoi Tesselation and its Applications. SIGGRAPH conference proceedings ACM Trans. Graph. (2010). [Google Scholar]
  21. D.C. Liu and J. Nocedal, On the limited memory bfgs method for large scale optimization. Math. Program. 45 (1989) 503–528. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  22. Y. Liu, HLBFGS, a hybrid l-bfgs optimization framework which unifies l-bfgs method, preconditioned l-bfgs method, preconditioned conjugate gradient method. http://research.microsoft.com/en-us/um/people/yangliu/software/HLBFGS/. [Google Scholar]
  23. Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu and C. Yang, On centroidal Voronoi tessellation-energy smoothness and fast computation. ACM Trans. Graph. 28 (2009) 1–17. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  24. S.P. Lloyd, Least squares quantization in pcm, IEEE Trans. Inform. Theory 28 (1982) 129–137. [CrossRef] [MathSciNet] [Google Scholar]
  25. R.J. McCann, Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 (1995) 309–323. [CrossRef] [MathSciNet] [Google Scholar]
  26. F. Mémoli, Gromov-wasserstein distances and the metric approach to object matching. Found. Comput. Math. 11 (2011) 417–487. [CrossRef] [MathSciNet] [Google Scholar]
  27. Q. Mérigot, A multiscale approach to optimal transport. Comput. Graph. Forum 30 (2011) 1583–1592. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  28. A. Meyer and S. Pion, FPG: A code generator for fast and certified geometric predicates, in Proc. of Real Numbers and Computers, Santiago de Compostela, Espagne (2008) 47–60. [Google Scholar]
  29. P. Milgrom and I. Segal, Envelope Theorems for Arbitrary Choice Sets. Econometrica 70 (2002) 583–601. [CrossRef] [MathSciNet] [Google Scholar]
  30. G. Monge, Mémoire sur la théorie des déblais et des remblais. Histoire de l’Acadmie Royale des Sciences (1781), (1784) 666–704. [Google Scholar]
  31. J. Munkres, Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5 (1957) 32–38. [CrossRef] [Google Scholar]
  32. V. Nivoliers, Echantillonage pour l’approximation de fonctions sur des maillages. Ph.D. thesis, IAEM, Université de Lorraine (2012). [Google Scholar]
  33. V. Nivoliers and B. Lévy, Approximating functions on a mesh with restricted voronoi diagrams, in ACM/EG Symposium on Geometry Processing/Computer Graphics Forum (2013). [Google Scholar]
  34. N. Papadakis, G. Peyré and E. Oudet, Optimal transport with proximal splitting. SIAM J. Imag. Sci. 7 (2014) 212–238. [CrossRef] [MathSciNet] [Google Scholar]
  35. F. Santambrogio, Introduction to Optimal Transport Theory, in Optimal Transport, Theory and Applications. London Math. Soc. Lect. Notes Ser. (2014) 3–21. [Google Scholar]
  36. J.R. Shewchuk, Robust Adaptive Floating-Point Geometric Predicates, in Symposium on Computational Geometry (1996) 141–150. [Google Scholar]
  37. C. Villani, Optimal transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2009). [Google Scholar]
  38. D. Yan, W. Wang, B. Lévy and Y. Liu, Efficient computation of clipped voronoi diagram for mesh generation. Computer-Aided Design Journal 45 (2013) 843–852. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you