Volume 49, Number 6, November-December 2015
Special Issue - Optimal Transport
Page(s) 1577 - 1592
Published online 05 November 2015
  1. S. Angenent, S. Haker and A. Tennenbaum, Minimizing flows for the Monge–Kantorovich problem. SIAM J. Math. Anal. 35 (2003) 61–97. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Mat. 84 (2000) 375–393. [Google Scholar]
  3. J.-D. Benamou, A. Oberman and B. Froese, Numerical solution of the second boundary value problem for the Elliptic Monge-Ampère equation. Rapport de recherche (2012). [Google Scholar]
  4. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 64 (1991) 375–417. [Google Scholar]
  5. E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the mongeampre type. Comput. Methods Appl. Mech. Eng. 195 (2006) 1344–1386. [Google Scholar]
  6. A. Iollo and D. Lombardi, A Lagrangian scheme for the solution of the optimal mass transfer problem. J. Comput. Phys. 230 (2011) 3430–3442. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Loeper and Francesca Rapetti, Numerical solution of the Monge-Ampere equation by a newton’s algorithm. C. R. Acad. Sci. Paris, Ser. I 340 (2005) 319–324. [Google Scholar]
  8. G. Monge, Memoire sur la théorie des déblais et des remblais. Histoire de l’Académie des Sciences de Paris (1781). [Google Scholar]
  9. N. Papadakis, G. Peyré and E. Oudet, Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7 (2014) 212–238. [CrossRef] [MathSciNet] [Google Scholar]
  10. L.-P. Saumier, M. Agueh and B. Khouider. An efficient numerical algorithm for the l2 optimal transport problem with periodic densities. IMA J. Appl. Math. (2013). [Google Scholar]
  11. C. Villani, Topics in Optimal Transportation. American Mathematical Society, 1st edition (2003). [Google Scholar]
  12. C. Villani, Optimal Transport, old and new. Springer-Verlag, 1st edition (2009). [Google Scholar]
  13. L. Weynans and A. Magni, Consistency, accuracy and entropy behaviour of remeshed particle methods. ESAIM: M2AN 47 (2013) 57–81. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you