Free Access
Issue |
ESAIM: M2AN
Volume 49, Number 6, November-December 2015
Special Issue - Optimal Transport
|
|
---|---|---|
Page(s) | 1593 - 1605 | |
DOI | https://doi.org/10.1051/m2an/2015034 | |
Published online | 05 November 2015 |
- L. Ambrosio, Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158 (2004) 227–260. [Google Scholar]
- L. Ambrosio, N. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195 (2014) 289–391. [CrossRef] [MathSciNet] [Google Scholar]
- S. Angenent, S. Haker, A. Tannenbaum and R. Kikinis, On area preserving mappings of minimal distortion, System Theory: Modeling, Analysis and Control, Kluwer (2000) 275–286. [Google Scholar]
- V.I. Arnold and B. Khesin, Topological methods in hydrodynamics. Vol. 125 of Appl. Math. Sci. Springer-Verlag (1998). [Google Scholar]
- M. Balinski, A competitive (dual) simplex method for the assignment problem. Math. Program. 34 (1986) 125–141. [Google Scholar]
- J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge−Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
- T.B. Benjamin, The alliance of practical and analytical insight into the nonlinear problems of fluid mechanics. Vol. 53 of Lect. Notes Math. Springer-Verlag (1976) 8–29. [Google Scholar]
- G.R. Burton, Rearrangements of functions, maximization of convex functionals and vortex rings. Math. Ann. 276 (1987) 225–253 [CrossRef] [MathSciNet] [Google Scholar]
- Y. Brenier, Topology-preserving diffusion of divergence-free vector fields and magnetic relaxation. Commun. Math. Phys. 330 (2014) 757–770; Linear Algebra Appl. 146 (1991) 79–91. [CrossRef] [Google Scholar]
- R.J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. [CrossRef] [MathSciNet] [Google Scholar]
- F. Gay−Balmaz and D. Holm, Selective decay by Casimir dissipation in inviscid fluids. Nonlinearity 26 (2013) 495–524. [CrossRef] [MathSciNet] [Google Scholar]
- D. Lesesvre, P. Pegon and F. Santambrogio, Optimal transportation with an oscillation-type cost: the one-dimensional case. Set-Valued Var. Anal. 21 (2013) 541–556. [CrossRef] [MathSciNet] [Google Scholar]
- P.-L. Lions, Mathematical topics in fluid mechanics. 1. Incompressible models. Vol. 3 of Oxford Lect. Series Math. Appl. (1996). [Google Scholar]
- J. Louet and F. Santambrogio, A sharp inequality for transport maps in W1,p(R) via approximation. Appl. Math. Lett. 25 (2012) 648–653. [CrossRef] [MathSciNet] [Google Scholar]
- C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids. Springer-Verlag (1994). [Google Scholar]
- F. Mémoli, Some properties of Gromov-Hausdorff distances. Discrete Comput. Geom. 48 (2012) 416–440. [CrossRef] [MathSciNet] [Google Scholar]
- F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101–174. [Google Scholar]
- K.T. Sturm, The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces. Preprint arXiv:1208.0434. [Google Scholar]
- C. Villani, Optimal Transport, Old and New. Springer-Verlag (2009). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.