Free Access
Issue
ESAIM: M2AN
Volume 50, Number 1, January-February 2016
Page(s) 1 - 41
DOI https://doi.org/10.1051/m2an/2015023
Published online 16 November 2015
  1. P. Bauman, H. Ben Dhia, N. Elkhodja, J. Oden and S. Prudhomme, On the application of the Arlequin method to the coupling of particle and continuum models. Comput. Mech. 42 (2008) 511–530 [CrossRef] [Google Scholar]
  2. X. Blanc, C. Le Bris and P.L. Lions, Atomistic to continuum limits for computational materials science. ESAIM: M2AN 41 (2007) 391–426. [CrossRef] [EDP Sciences] [Google Scholar]
  3. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, 1st edition. Clarendon Press (1954). [Google Scholar]
  4. S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. In vol. 15. Springer (2008). [Google Scholar]
  5. V.I. Burenkov, On extension of functions with preservation of seminorm. Trudy Mat. Inst. Steklov. 172 (1985) 71–85. [MathSciNet] [Google Scholar]
  6. M. Discacciati, P. Gervasio and A. Quarteroni, The interface control domain decomposition (icdd) method for elliptic problems. SIAM J. Control Optim. 51 (2013) 3434–3458. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Discacciati, P. Gervasio and A. Quarteroni, Interface control domain decomposition methods for heterogeneous problems. Int. J. Numer. Methods Fluids 76 (2014) 471–496. [CrossRef] [Google Scholar]
  8. M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum approximation. ESAIM: M2AN 42 (2008) 113–139. [CrossRef] [EDP Sciences] [Google Scholar]
  9. W. E, J. Lu and J.Z. Yang, Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214115. [CrossRef] [Google Scholar]
  10. V. Ehrlacher, C. Ortner and A.V. Shapeev, Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations (2013). Preprint arXiv:1306.5334. [Google Scholar]
  11. L.C. Evans, Partial Differential Equations. Grad. Stud. Math., 2nd edition. American Mathematical Society (2010). [Google Scholar]
  12. P. Gervasio, J.L. Lions and A. Quarteroni, Heterogeneous coupling by virtual control methods. Numer. Math. 90 (2001) 241–264. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Giaquinta. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press (1983). [Google Scholar]
  14. J. Hubbard and B. Hubbard, Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach, 4th edition. Matrix Editions (2009). [Google Scholar]
  15. B. Van Koten and M. Luskin, Analysis of energy-based blended quasi-continuum approximations. SIAM J. Numer. Anal. 49 (2011) 2182–2209. [CrossRef] [Google Scholar]
  16. X. Li, L. Luskin, C. Ortner and A. Shapeev, Theory-based benchmarking of the blended force-based quasicontinuum method. Comput. Methods Appl. Mech. Eng. 268 (2014) 763–781. [CrossRef] [Google Scholar]
  17. X. Li, M. Luskin and C. Ortner, Positive definiteness of the blended force-based quasicontinuum method. Multiscale Model. Simul. 10 (2012) 1023–1045. [CrossRef] [Google Scholar]
  18. X. Li, C. Ortner, A.V. Shapeev and B. Van Koten, Analysis of Blended Atomistic/Continuum Hybrid Methods (2014). Preprint arXiv:1404.4878. [Google Scholar]
  19. J.L. Lions, Virtual and effective control for distributed systems and decomposition of everything. J. Anal. Math. 80 (2000) 257–297. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.L. Lions and O. Pironneau, Algorithmes paralleles pour la solution de problemes aux limites. C. R. Acad. Sci.-Series I-Math. 327 (1998) 947–952. [Google Scholar]
  21. J. Lu and P. Ming, Convergence of a force-based hybrid method in three dimensions. Commun. Pure Appl. Math. 66 (2013) 83–108. [CrossRef] [Google Scholar]
  22. M. Luskin and C. Ortner, Atomistic-to-continuum coupling. Acta Numerica 22 (2013) 397–508. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Luskin, C. Ortner and B. Van Koten, Formulation and optimization of the energy-based blended quasicontinuum method. Comput. Methods Appl. Mech. Eng. 253 (2013) 160–168. [CrossRef] [Google Scholar]
  24. R. Miller and E. Tadmor, A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17 (2009) 053001. [CrossRef] [Google Scholar]
  25. D. Olson, P. Bochev, M. Luskin and A. Shapeev, An Optimization-Based Atomistic-to-Continuum Coupling Method. SIAM J. Numer. Anal. 52 (2014) 2183–2204. [CrossRef] [Google Scholar]
  26. D. Olson, P. Bochev, M. Luskin and A. Shapeev, Development of an optimization-based atomistic-to-continuum coupling method. In Proc. of LSSC 2013, edited by I. Lirkov, S. Margenov and J. Wasniewski. Springer Lect. Notes Comput. Sci. Springer-Verlag, Berlin, Heidelberg (2014). [Google Scholar]
  27. M. Ortiz, R. Phillips and E.B. Tadmor, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (1996) 1529–1563. [CrossRef] [Google Scholar]
  28. C. Ortner, A posteriori existence in numerical computations. SIAM J. Numer. Anal. 47 (2009) 2550–2577. [Google Scholar]
  29. C. Ortner, The role of the patch test in 2D atomistic-to-continuum coupling methods. ESAIM: M2AN 46 (2012) 1275–1319. [CrossRef] [EDP Sciences] [Google Scholar]
  30. C. Ortner and A Shapeev, Analysis of an energy-based atomistic/continuum approximation of a vacancy in the 2d triangular lattice. Math. Comput. 82 (2013) 2191–2236. [Google Scholar]
  31. C. Ortner and A.V. Shapeev, Interpolants of Lattice Functions for the Analysis of Atomistic/Continuum Multiscale Methods (2012). Preprint arXiv:1204.3705. [Google Scholar]
  32. C. Ortner, A.V. Shapeev and L. Zhang, (In-)stability and stabilisation of QNL-type atomistic-to-continuum coupling methods (2013). Preprint arXiv:1308.3894. [Google Scholar]
  33. C. Ortner and E. Süli. A note on linear elliptic systems on Rd (2012). Preprint arXiv:1202.3970. [Google Scholar]
  34. C. Ortner and F. Theil, Justification of the Cauchy–Born approximation of elastodynamics. Arch. Ration. Mech. Anal. 207 (2013) 1025–1073. [CrossRef] [PubMed] [Google Scholar]
  35. C. Ortner and L. Zhang, Construction and sharp consistency estimates for atomistic/continuum coupling methods with general interfaces: A two-dimensional model problem. SIAM J. Numer. Anal. 50 (2012) 2940–2965. [CrossRef] [Google Scholar]
  36. C. Ortner and L. Zhang, Atomistic/Continuum Blending with Ghost Force Correction (2014). Preprint arXiv:1407.0053. [Google Scholar]
  37. R. Phillips, Crystals, defects and microstructures: modeling across scales. Cambridge University Press (2001). [Google Scholar]
  38. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  39. A.V. Shapeev, Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions. SIAM J. Multiscale Model. Simul. 9 (2011) 905–932. [CrossRef] [MathSciNet] [Google Scholar]
  40. T. Shimokawa, J.J. Mortensen, J. Schiotz and K.W. Jacobsen, Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region. Phys. Rev. B 69 (2004) 214104. [CrossRef] [Google Scholar]
  41. E. Stein, Singular integrals and differentiability properties of functions. In vol. 2. Princeton University Press (1970). [Google Scholar]
  42. E. Tadmor and R. Miller, Modeling Materials Continuum, Atomistic and Multiscale Techniques, 1st edition. Cambridge University Press (2011). [Google Scholar]
  43. E W. and P. Ming, Cauchy–Born rule and the stability of crystalline solids: static problems. Arch. Rat. Mech. Anal. 183 (2007) 241–297. [CrossRef] [MathSciNet] [Google Scholar]
  44. S.P. Xiao and T. Belytschko, A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193 (2004) 1645–1669. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you