Free Access
Issue
ESAIM: M2AN
Volume 50, Number 2, March-April 2016
Page(s) 311 - 336
DOI https://doi.org/10.1051/m2an/2015046
Published online 05 February 2016
  1. S. Adams and B. Cockburn, A mixed finite element method for elasticity in three dimensions. J. Sci. Comput. 25 (2005) 515–521. [CrossRef] [Google Scholar]
  2. M. Amara and J.M. Thomas, Equilibrium finite elements for the linear elastic problem. Numer. Math. 33 (1979) 367–383. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Araya, C. Harder, D. Paredes and F. Valentin, Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51 (2013) 3505–3531. [CrossRef] [Google Scholar]
  4. T. Arbogast and K. Boyd, Subgrid upscaling and mixed multiscale finite elements. SIAM J. Numer. Anal. 44 (2006) 1150–1171. [CrossRef] [Google Scholar]
  5. D.N. Arnold, G. Awanou and R. Winther, Finite elements for symmetric tensors in three dimensions. Math. Comput. 77 (2008) 1229–1251. [Google Scholar]
  6. D.N. Arnold and R. Winther, Mixed finite elements for elasticity. Numer. Math. 92 (2002) 401–419. [CrossRef] [MathSciNet] [Google Scholar]
  7. D.N. Arnold, F. Brezzi and J. Douglas, Peers: a new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984) 347–367. [CrossRef] [MathSciNet] [Google Scholar]
  8. D.N. Arnold, J.J. Douglas and C.P. Gupta, A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1–22. [CrossRef] [MathSciNet] [Google Scholar]
  9. D.N. Arnold, G. Awanou and R. Winther, Nonconforming tetrahedral mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 23 (2014) 783–796. [CrossRef] [Google Scholar]
  10. I. Babuska and E. Osborn, Generalized finite element methods: Their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510–536. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Beirão da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [CrossRef] [Google Scholar]
  12. J. Bramwell, L. Demkowicz, J. Gopalakrishnan and W. Qiu, A locking-free hp dpg method for linear elasticity with symmetric stresses. Numer. Math. 122 (2012) 671–707. [CrossRef] [MathSciNet] [Google Scholar]
  13. S.C. Brenner, Korn’s inequalities for piecewise H1 vector fields. Math. Comput. 73 (2004) 1067–1087. [Google Scholar]
  14. S.C. Brenner and L.R. Scott, The Mathematical Foundations of the Finite Element Methods. Springer (2002). [Google Scholar]
  15. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Vol. 15 of Springer Ser. Comput. Math. Springer-Verlag, Berlin, New-York (1991). [Google Scholar]
  16. Z. Chen and T. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72 (2002) 541–576. [Google Scholar]
  17. B. Cockburn and K. Chi, Superconvergent hdg methods for linear elasticity with weakly symmetric stresses. IMA J. Numer. Anal. (2012) 1–24. [Google Scholar]
  18. L. Demkowicz and J. Gopalakrishnan, A primal dpg method without a first order reformulation. Comput. Math. Appl. 66 (2013) 1058–1064. [CrossRef] [Google Scholar]
  19. A. Ern and J.-L. Guermond, Theory and practice of finite elements. Springer-Verlag, Berlin, New-York (2004). [Google Scholar]
  20. J. Gopalakrishnan and J. Guzmán, Symmetric nonconforming mixed finite elements for linear elasticity. SIAM J. Numer. Anal. 49 (2011) 1504–1520. [CrossRef] [Google Scholar]
  21. J. Gopalakrishnan and W. Qiu, An analysis of the practical dpg method. Math. Comput. 83 (2014) 537–552. [CrossRef] [Google Scholar]
  22. J. Guzmán and M. Neilan, Symmetric and conforming mixed finite elements for plane elasticity using rational bubble functions. Numer. Math. 126 (2014) 153–171. [CrossRef] [MathSciNet] [Google Scholar]
  23. C. Harder, D. Paredes and F. Valentin, A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients. J. Comput. Phys. 245 (2013) 107–130. [CrossRef] [Google Scholar]
  24. C. Harder, D. Paredes and F. Valentin, On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogenous coefficients. SIAM Multiscale Model. Simul. 13 (2015) 491–518. [CrossRef] [MathSciNet] [Google Scholar]
  25. T.Y. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. Hu, A new family of efficient conforming mixed finite elements on both rectangular and cuboid meshes for linear elasticity in the symmetric formulation. Preprint arXiv:1311.4718v3 [math.NA] (2015). [Google Scholar]
  27. L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5 (1960) 286–292. [CrossRef] [MathSciNet] [Google Scholar]
  28. T. Pian and P. Tong, Basis of finite element methods for solid continua, Int. J. Numer. Methods Engrg. 1 (1969) 3–28. [CrossRef] [Google Scholar]
  29. W. Qiu and K. Shi, An hdg method for linear elasticity with strong symmetric stresses. Preprint arXiv:1312.1407v2 [math.NA] (2014). [Google Scholar]
  30. P. Raviart and J. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspect of finite element methods, No. 606 in Lect. Notes Math. Springer-Verlag, New York (1977) 292–315. [Google Scholar]
  31. P. Raviart and J. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comput. 31 (1977) 391–413. [Google Scholar]
  32. S. Soon, B. Cockburn and H. Stolarski, A hybridizable discontinuous galerkin method for linear elasticity. Int. J. Numer. Methods Engrg. 80 (2009) 1058–1092. [CrossRef] [Google Scholar]
  33. R. Stenberg, On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math. 48 (1986) 447–462. [CrossRef] [MathSciNet] [Google Scholar]
  34. a. Toselli and O. Widlund, Domain decomposition methods-algorithms and theory. Vol. 34 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you