Free Access
Volume 50, Number 2, March-April 2016
Page(s) 541 - 563
Published online 14 March 2016
  1. P. Acquistapace and B. Terreni, Linear parabolic equations in Banach spaces with variable domains but constant interpolation spaces. Ann. Sc. Norm. Super. Pisa 13 (1986) 75–107. [Google Scholar]
  2. R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press, New York (2003). [Google Scholar]
  3. D.N. Arnold, An interior penalty Finite Element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Babuška, The Finite Element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179–192. [CrossRef] [Google Scholar]
  5. C. Baiocchi, Problemi misti per l’equazione del calore. Rendiconti del Seminario Matematico e Fisico di Milano. Università Studi Milano, XLI, Milan (1971) 3–38. [Google Scholar]
  6. Y. Bazilevs and T.J.R. Hughes, Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36 (2007) 12–26. [CrossRef] [Google Scholar]
  7. Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes, Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput. Methods Appl. Mech. Eng. 196 (2007) 4853–4862. [CrossRef] [Google Scholar]
  8. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction. Springer-Verlag, Berlin, Heidelberg, New York (1976). [Google Scholar]
  9. A. Bove, B. Franchi, and E. Obrecht, Parabolic problems with mixed time dependent lateral conditions. Commun. Partial Differ. Equ. 7 (1982) 134–156. [CrossRef] [Google Scholar]
  10. A. Bove, B. Franchi and E. Obrecht, Boundary value problems with mixed lateral conditions for parabolic operators. Ann. Mat. Pura Appl. 131 (1982) 375–413. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  12. J. Butcher, The Numerical Analysis of Ordinary Differential Equations. Wiley, New York (1987). [Google Scholar]
  13. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  14. C. Dawson, S. Sun, and M. Wheeler, Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193 (2004) 2565–2580. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). [Google Scholar]
  16. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78 (2009) 1353–1374. [CrossRef] [Google Scholar]
  18. T. Kato, Abstract evolution equations of parabolic type in Banach and Hilbert spaces. Nagoya Math. J. 19 (1961) 93–125. [MathSciNet] [Google Scholar]
  19. J.L. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications. Vol. I, II. Springer-Verlag, Berlin (1972). [Google Scholar]
  20. J.L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation. Publ. Math. Inst. Hautes Étud. Sci. 19 (1964) 5–68. [Google Scholar]
  21. E. Magenes, Problemi al contorno misti per I’equazione del calore. Rend. Semin. Mat. Univ. Padova 24 (1955) 1–28. [Google Scholar]
  22. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. 36 (1971) 9–15. [CrossRef] [Google Scholar]
  23. F. Nobile and C. Vergara, An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Scientific Comput. 30 (2008) 731–763. [Google Scholar]
  24. J.T. Oden, I. Babǔska, and C. Baumann, A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146 (1998) 491–519. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Quarteroni, Numerical Models for Differential Problems. Springer-Verlag, Milan (2014). [Google Scholar]
  26. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin, Heidelberg (1994). [Google Scholar]
  27. B. Rivière, Discontinuous Galerkin Methods For Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia, PA, USA (2008). [Google Scholar]
  28. B. Rivière, M.F. Wheeler, and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902–931. [CrossRef] [MathSciNet] [Google Scholar]
  29. G. Savaré, Parabolic problems with mixed variable lateral conditions: an abstract approach. J. Pure Appl. Math. 76 (1997) 321–351. [CrossRef] [Google Scholar]
  30. S. Sun and M.F. Wheeler, Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43 (2005) 195–219. [CrossRef] [Google Scholar]
  31. A. Tagliabue, Ph.D. thesis, Politecnico di Milano, Italy. In preparation (2016). [Google Scholar]
  32. R. Temam, Navier-Stokes Equations. Theory and Numerical Results. North-Holland Publishing Company, Amsterdam, New York-Oxford (1977). [Google Scholar]
  33. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag, Berlin, Heidelberg (1984). [Google Scholar]
  34. C. Vergara, Nitsche’s method for defective boundary value problems in incompressible fluid-dynamics. J. Sci. Comput. 46 (2011) 100–123. [CrossRef] [Google Scholar]
  35. M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you