Free Access
Volume 50, Number 2, March-April 2016
Page(s) 499 - 539
Published online 11 March 2016
  1. B. Andreianov, M. Bendahmane and K.H. Karlsen, Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ. 7 (2010) 1–67. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Andreianov and N. Igbida, On uniqueness techniques for degenerate convection-diffusion problems. Int. J. Dyn. Syst. Differ. Eq. 4 (2012) 3–34. [Google Scholar]
  3. D. Aregba-Driollet, R. Natalini and S. Tang, Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comput. 73 (2004) 63–94. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Barles and E.R. Jakobsen, Error bounds for monotone approximation schemes for Hamilton−Jacobi−Bellman equations. SIAM J. Numer. Anal. 43 (2005) 540–558. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Bouchut and B. Perthame, Kružkov’s estimates for scalar conservation laws revisited. Trans. Amer. Math. Soc. 350 (1998) 2847–2870. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Bouchut, F. R. Guarguaglini and R. Natalini, Diffusive BGK approximations for nonlinear multidimensional parabolic equations. Indiana Univ. Math. J. 49 (2000) 723–749. [CrossRef] [MathSciNet] [Google Scholar]
  7. L.A. Caffarelli and P. E. Souganidis. A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Commun. Pure Appl. Math. 61 (2008) 1–17. [Google Scholar]
  8. J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (1999) 269–361. [Google Scholar]
  9. A. Chambolle and B.J. Lucier, Un principe du maximum pour des opérateurs monotones. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 823–827. [CrossRef] [MathSciNet] [Google Scholar]
  10. G.-Q. Chen and B. Perthame, Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20 (2003) 645–668. [CrossRef] [MathSciNet] [Google Scholar]
  11. G.-Q. Chen and K.H. Karlsen, Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Commun. Pure Appl. Anal. 4 (2005) 241–266. [CrossRef] [MathSciNet] [Google Scholar]
  12. G.-Q. Chen and K.H. Karlsen, L1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations. Trans. Amer. Math. Soc. 358 (2006) 937–963. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Cockburn, Continuous dependence and error estimation for viscosity methods. Acta Numer. 12 (2003) 127–180. [CrossRef] [MathSciNet] [Google Scholar]
  14. M.G. Crandall and T.M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265–298. [CrossRef] [MathSciNet] [Google Scholar]
  15. M.G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43 (1984) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  16. C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Vol. 325 of Grundl. Math. Wiss. [Fundamental Principles of Mathematical Sciences]. 3rd edition Springer-Verlag, Berlin (2010). [Google Scholar]
  17. S. Evje and K.H. Karlsen, Discrete approximations of BV solutions to doubly nonlinear degenerate parabolic equations. Numer. Math. 86 (2000) 377–417. [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Evje and K.H. Karlsen, Monotone difference approximations of BV solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal. 37 (2000) 1838–1860. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Evje and K.H. Karlsen, An error estimate for viscous approximate solutions of degenerate parabolic equations. J. Nonlin. Math. Phys. 9 (2002) 262–281. [CrossRef] [Google Scholar]
  20. R. Eymard, T. Gallouët and R. Herbin, Error estimate for approximate solutions of a nonlinear convection-diffusion problem. Adv. Differ. Equ. 7 (2002) 419–440. [Google Scholar]
  21. R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41–82. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Holden, K.H. Karlsen, K.-A. Lie and N.H. Risebro, Splitting methods for partial differential equations with rough solutions. EMS Series of Lect. Math. Analysis and MATLAB programs. European Mathematical Society (EMS), Zürich (2010). [Google Scholar]
  23. K.H. Karlsen and N.H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. ESAIM: M2AN 35 (2001) 239–269. [CrossRef] [EDP Sciences] [Google Scholar]
  24. K.H. Karlsen, U. Koley N.H. Risebro, An error estimate for the finite difference approximation to degenerate convection-diffusion equations. Numer. Math. 121 (2012) 367–395. [CrossRef] [MathSciNet] [Google Scholar]
  25. K.H. Karlsen, N.H. Risebro E.B. Storrøsten, L1 error estimates for difference approximations of degenerate convection-diffusion equations. Math. Comput. 83 (2014) 2717–2762. [CrossRef] [Google Scholar]
  26. S.N. Kružkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. [MathSciNet] [Google Scholar]
  27. N.V. Krylov, The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients. Appl. Math. Optim. 52 (2005) 365–399. [CrossRef] [MathSciNet] [Google Scholar]
  28. N.N. Kuznecov, The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz. 16 (1976) 1489–1502, 1627. [Google Scholar]
  29. P.-L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7 (1994) 169–191. [CrossRef] [MathSciNet] [Google Scholar]
  30. C. Makridakis and B. Perthame, Optimal rate of convergence for anisotropic vanishing viscosity limit of a scalar balance law. SIAM J. Math. Anal. 34 (2003) 1300–1307. [CrossRef] [MathSciNet] [Google Scholar]
  31. M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations. ESAIM: M2AN 35 (2001) 355–387. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  32. N.H. Pavel, Differential equations, flow invariance and applications. Vol. 113 of Res. Notes Math. Pitman (Advanced Publishing Program), Boston, MA (1984). [Google Scholar]
  33. B. Perthame, Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure. J. Math. Pures Appl. 77 (1998) 1055–1064. [CrossRef] [Google Scholar]
  34. K. Sato, On the generators of non-negative contraction semigroups in Banach lattices. J. Math. Soc. Japan 20 (1968) 423–436. [CrossRef] [MathSciNet] [Google Scholar]
  35. A.I. Vol’pert and S.I. Hudjaev, The Cauchy problem for second order quasilinear degenerate parabolic equations. Mat. Sb. (N.S.) 78 (1969) 374–396. [MathSciNet] [Google Scholar]
  36. Z.Q. Wu and J.X. Yin, Some properties of functions in BVx and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeast. Math. J. 5 (1989) 395–422. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you