Issue
ESAIM: M2AN
Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
Page(s) 677 - 698
DOI https://doi.org/10.1051/m2an/2015077
Published online 23 May 2016
  1. P. Alotto and L. Codecasa, A FIT Formulation of Bianisotropic Materials Over Polyhedral Grids. IEEE Trans. Magn. 50 (2014) 7008504. [Google Scholar]
  2. L. Beirao da Veiga, A residual based error estimator for the Mimetic Finite Difference method. Numer. Math. 108 (2008) 387–406. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Beirao da Veiga, V. Gyrya, K. Lipnikov and G. Manzini, Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228 (2009) 7215–7232. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Bonelle and A. Ern, Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. [CrossRef] [EDP Sciences] [Google Scholar]
  5. J. Bonelle, D.A. Di Pietro and A. Ern, Low-order reconstruction operators on polyhedral meshes: Application to Compatible Discrete Operator schemes. Comput. Aid. Geom. Des. 35–36 (2015) 27–41. [Google Scholar]
  6. A. Bossavit, On the geometry of electromagnetism. 4: Maxwell’s house. J. Japan Soc. Appl. Electromagn. Mech. 6 (1998) 318–326. [Google Scholar]
  7. A. Bossavit, Computational electromagnetism and geometry. 5: The Galerkin hodge. J. Japan Soc. Appl. Electromagn. Mech. 2 (2000) 203–209. [Google Scholar]
  8. A. Bossavit, Generalized Finite Differences in Computational Electromagnetics. Progress in Electromagnetics Research. Vol. 32 of PIER 32, edited by F.L. Teixeira. EMW, Cambridge, Ma (2001) 45–64. [Google Scholar]
  9. A. Bossavit and L. Kettunen, Yee-like schemes on staggered cellular Grids: A synthesis between FIT and FEM approaches. IEEE Trans. Mag. 36 (2000) 861–867. [Google Scholar]
  10. F. Brezzi and A. Buffa, Innovative mimetic discretizations for electromagnetic problems. J. Comput. Appl. Math. 234 (2010) 1980–1987. [CrossRef] [MathSciNet] [Google Scholar]
  11. S.H. Christiansen, A construction of spaces of compatible differential forms on cellular complexes. Math. Models Methods Appl. Sci. 18 (2008) 739–757. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.C. Campbella and M.J. Shashkov, A Tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172 (2001) 739–765. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Clemens and T. Weiland, Discrete Electromagnetism with the Finite Integration Technique. Vol. 32 of PIER, edited by F.L. Teixeira. EMW Publishing, Cambridge, Massachusetts, USA (2001) 65–87. [Google Scholar]
  14. L. Codecasa and F. Trevisan, Piecewise uniform bases and energetic approach for discrete constitutive matrices in electromagnetic problems. Int. J. Numer. Meth. Eng. 65 (2006) 548–565. [CrossRef] [Google Scholar]
  15. L. Codecasa and F. Trevisan, Constitutive equations for discrete electromagnetic problems over polyhedral grids. J. Comput. Phys. 225 (2007) 1894–1918. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Codecasa, R. Specogna and F. Trevisan, Base functions and discrete constitutive relations for staggered polyhedral grids. Comput. Methods Appl. Mech. Engrg. 198 (2009) 1117–1123. [CrossRef] [MathSciNet] [Google Scholar]
  17. L. Codecasa, R. Specogna and F. Trevisan, Symmetric Positive-Definite Constitutive Matrices for Discrete Eddy-Current Problems. IEEE Trans. Mag. 43 (2007) 510–515. [CrossRef] [Google Scholar]
  18. L. Codecasa, R. Specogna and F. Trevisan, Discrete constitutive equations over hexahedral grids for eddy-current problems. CMES 1 (2008) 1–14. [Google Scholar]
  19. L. Codecasa, R. Specogna and F. Trevisan, Subgridding to solving magnetostatics within Discrete Geometric Approach. IEEE Trans. Magn. 45 (2009) 1024–1027. [CrossRef] [Google Scholar]
  20. L. Codecasa, R. Specogna and F. Trevisan, A new set of basis functions for the Discrete Geometric Approach. J. Comput. Phys. 229 (2010) 7401–7410. [CrossRef] [MathSciNet] [Google Scholar]
  21. P. Dlotko and R. Specogna, Efficient generalized source field computation for h-oriented magnetostatic formulations. Eur. Phys. J. Appl. Phys. 53 (2011) 20801. [CrossRef] [EDP Sciences] [Google Scholar]
  22. T. Euler, Consistent Discretization of Maxwell’s Equations on Polyhedral Grids. Ph. D. thesis, TU Darmstadt, Darmstadt, Germany (2007). [Google Scholar]
  23. R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
  24. F. Henrotte, R. Specogna and F. Trevisan, Reinterpretation of the nodal force method within Discrete Geometric Approaches. IEEE Trans. Magn. 44 (2008) 690–693. [CrossRef] [Google Scholar]
  25. Y. Kuznetsov and S. Repin, Mixed Finite Element Method on Polygonal and Polyhedral Meshes. Numer. math. Adv. Appl. Springer, Berlin (2004) 615–622. [Google Scholar]
  26. I. Lindell, Methods for Electromaghnetic Field Analysis. IEEE Press, Piscataway, NJ, USA (1992). [Google Scholar]
  27. M. Marrone, Properties of Constitutive Matrices for Electrostatic and Magnetostatic Problems. IEEE Trans. Mag. 40 (2004) 1516–1520. [CrossRef] [Google Scholar]
  28. J.C. Nedelec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  29. J.C. Nedelec, A new family of mixed finite elements in R3. Numer. Math. 50 (1986) 57–81. [CrossRef] [MathSciNet] [Google Scholar]
  30. T. Tarhasaari, L. Kettunen and A. Bossavit, Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques [for EM field analysis]. IEEE Trans. Magn. 35 (1999) 1494–1497. [CrossRef] [Google Scholar]
  31. E. Tonti, Finite Formulation of the Electromagnetic Field. IEEE Trans. Mag. 38 (2002) 333–336. [CrossRef] [Google Scholar]
  32. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you