Issue |
ESAIM: M2AN
Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
|
|
---|---|---|
Page(s) | 749 - 781 | |
DOI | https://doi.org/10.1051/m2an/2015079 | |
Published online | 23 May 2016 |
- I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127 (1996) 2–14. [CrossRef] [Google Scholar]
- B. Andreianov, M. Bendahmane and K.H. Karlsen, Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ. 7 (2010) 1–67. [CrossRef] [MathSciNet] [Google Scholar]
- B. Andreianov, M. Bendahmane and F. Hubert, On 3D DDFV discretization of gradient and divergence operators: discrete functional analysis tools and applications to degenerate parabolic problems. Comput. Methods Appl. Math. 13 (2013) 369–410. [CrossRef] [MathSciNet] [Google Scholar]
- B. Andreianov, M. Bendahmane and K. Karlsen, A Gradient Reconstruction Formula for Finite-volume Schemes and Discrete Duality. In Proc. of Finite Volumes for Complex Applications V. ISTE, London (2008) 161–168. [Google Scholar]
- Y. Alnashri and J. Droniou, Gradient schemes for variational inequalities (2014). Submitted. [Google Scholar]
- B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Eqs. 23 (2007) 145–195. [Google Scholar]
- B. Andreianov and F. Hubert, Personal communication (2015). [Google Scholar]
- D.N. Arnold and F. Brezzi, Mixed and conforming finite element methods; implementation, postprocessing and error estimates. Model. Math. Anal. Num. 19 (1985) 7–32. [Google Scholar]
- D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47 (2010) 281–354. [CrossRef] [MathSciNet] [Google Scholar]
- J. Bonelle, Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations. Ph.D. thesis, University of Paris-Est (2014). [Google Scholar]
- J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. [CrossRef] [EDP Sciences] [Google Scholar]
- F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46 (2008) 3032–3070. [CrossRef] [MathSciNet] [Google Scholar]
- K. Brenner, M. Groza, C. Guichard, G. Lebeau and R. Masson, Gradient discretization of hybrid dimensional darcy flows in fractured porous media. To appear in: Numer. Math. (2015). Doi:10.1007/s00211-015-0782-x [Google Scholar]
- F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- C. Cancès and C. Guichard, Numerical analysis of a robust entropy-diminishing Finite Volume scheme for parabolic equations with gradient structure (2015). [Google Scholar]
- P.G. Ciarlet, The finite element method for elliptic problems. Access Online via Elsevier (1978). [Google Scholar]
- Y. Coudière and F. Hubert, A 3d discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comp. 33 (2011) 1739–1764. [CrossRef] [Google Scholar]
- Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, A 2D/3D discrete duality finite volume scheme. Application to ECG simulation. Int. J. Finite 6 (2009) 24. [Google Scholar]
- Y. Coudière, F. Hubert and G. Manzini, A CeVeFE DDFV scheme for discontinuous anisotropic permeability tensors. In Proc. of Finite volumes for complex applications VI. Vol. 4 of Springer Proc. Math. Springer, Heidelberg (2011) 283–291. [Google Scholar]
- Y. Coudière, F. Hubert and G. Manzini, A CeVeFE DDFV Scheme for Discontinuous Anisotropic Permeability Tensors. In Finite Volumes for Complex Applications. VI. Problems & Perspectives. Vol. 4 of Springer Proc. Math. Springer, Heidelberg (2011) 283–291. [Google Scholar]
- D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69. Springer (2012). [Google Scholar]
- K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Special issue on Recent Techniques for PDE Discretizations on Polyhedral Meshes. M3AS: Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. [CrossRef] [MathSciNet] [Google Scholar]
- J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. [CrossRef] [MathSciNet] [Google Scholar]
- J. Droniou and B.P. Lamichhane, Gradient schemes for linear and non-linear elasticity equations. Numer. Math. 129 (2015) 251–277. [CrossRef] [MathSciNet] [Google Scholar]
- J. Droniou and R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations. Numer. Math. 132 (2016) 721–766. [CrossRef] [MathSciNet] [Google Scholar]
- J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. [CrossRef] [MathSciNet] [Google Scholar]
- J. Droniou, R. Eymard, T. Gallouët and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. M3AS: Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. [Google Scholar]
- J. Droniou, R. Eymard and P. Féron, Gradient schemes for Stokes problem. To appear in IMA J. Numer. Anal. (2015). Doi:10.1093/imanum/drv061 [Google Scholar]
- J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, Gradient schemes for elliptic and parabolic problems. In preparation (2015). [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In Techniques of Scientific Computing, Part III, edited by P.G. Ciarlet and J.-L. Lions. Handbook of Numerical Analysis VII. North-Holland, Amsterdam (2000) 713–1020. [Google Scholar]
- R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, Analysis tools for finite volume schemes. Acta Math. Univ. Comenian. (N.S.) 76 (2007) 111–136. [MathSciNet] [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
- R. Eymard, C. Guichard, R. Herbin and R. Masson, Vertex Centred Discretization of Two-phase Darcy Flows on General Meshes. In Congrès National de Mathématiques Appliquées et Industrielles, vol. 35 of ESAIM Proc. EDP Sci., Les Ulis (2011) 59–78. [Google Scholar]
- R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klofkorn and G. Manzini, 3d Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids. In Proc. of Finite Volumes for Complex Applications VI, Praha. Springer, Springer (2011) 895–930. [Google Scholar]
- R. Eymard, C. Guichard and R. Herbin. Small-stencil 3d schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2012) 265–290. [CrossRef] [EDP Sciences] [Google Scholar]
- R. Eymard, C. Guichard, R. Herbin and R. Masson, Vertex-centred discretization of multiphase compositional darcy flows on general meshes. Comput. Geosci. (2012) 1–19. [Google Scholar]
- R. Eymard, A. Handlovicováand K. Mikula, Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes. Communic. Pure and Appl. Anal. 11 (2012) 147–172. [CrossRef] [Google Scholar]
- R. Eymard, P. Feron, T. Gallouët, R. Herbin and C. Guichard, Gradient schemes for the Stefan problem. Int. J. Finite Volumes, 10s (2013). [Google Scholar]
- R. Eymard, C. Guichard, R. Herbin and R. Masson, Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation. ZAMM Z. Angew. Math. Mech. 94 (2014) 560–585. [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, RTk mixed finite elements for some nonlinear problems. Math. Comput. Simul. 118 (2015) 186–197. [CrossRef] [Google Scholar]
- R. Eymard, A. Handlovicova, R. Herbin, K. Mikula and O. Stasová, Applications of approximate gradient schemes for nonlinear parabolic equations. Appl. Math. 60 (2015) 135–156. [CrossRef] [MathSciNet] [Google Scholar]
- I. Faille, Modélisation bidimensionnelle de la genèse et de la migration des hydrocarbures dans un bassin sédimentaire. Ph.D. thesis, University Joseph Fourier – Grenoble I (1992). [Google Scholar]
- F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192 (2003) 1939–1959. [CrossRef] [MathSciNet] [Google Scholar]
- F. Hermeline, Approximation of 2-d and 3-d diffusion operators with variable full tensor coefficients on arbitrary meshes. Comput. Methods Appl. Mech. Eng. 196 (2007) 2497–2526. [CrossRef] [MathSciNet] [Google Scholar]
- F. Hermeline, A finite volume method for approximating 3d diffusion operators on general meshes. J. Comput. Phys. 228 (2009) 5763–5786. [CrossRef] [MathSciNet] [Google Scholar]
- K. Lipnikov, G. Manzini and M. Shaskov, Mimetic finite difference method. J. Comput. Phys. 257 (2011) 1163–1227. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.