Issue |
ESAIM: M2AN
Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
|
|
---|---|---|
Page(s) | 783 - 808 | |
DOI | https://doi.org/10.1051/m2an/2015066 | |
Published online | 23 May 2016 |
- P.F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. [CrossRef] [Google Scholar]
- B. Ayuso de Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. To appear in Special issue – Polyhedral discretization for PDE. ESAIM: M2AN 50 (2016). DOI:10.1051/m2an/2015090 [Google Scholar]
- I.M. Babuška and S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation? SIAM Rev. 42 (2000) 451–484. [Google Scholar]
- L. Beirão da Veiga, and G. Manzini, A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2014) 759–781. [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [CrossRef] [Google Scholar]
- L. Beirão da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [CrossRef] [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, H(div) and H(curl)-conforming virtual element method. To appear in Numer. Math. (2015). DOI:10.1007/s00211-015-0746-1 [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems. To appear in Special issue – Polyhedral discretization for PDE. ESAIM M2AN 50 (2016). DOI:10.1051/m2an/2015067 [Google Scholar]
- L Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Virtual element methods for general second order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26 (2016) 729–750. [Google Scholar]
- L. Beirão Da Veiga, F. Brezzi, L.D. Marini and A. Russo, The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. [CrossRef] [Google Scholar]
- L. Beirão da Veiga, C. Lovadina and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. [CrossRef] [MathSciNet] [Google Scholar]
- M.F. Benedetto, S. Berrone, S. Pieraccini and S. Scialò, The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280 (2014) 135–156. [Google Scholar]
- J.H. Bramble and L.E. Payne, Bounds in the Neumann problem for second order uniformly elliptic operators. Pacific J. Math 12 (1962) 823–833. [CrossRef] [MathSciNet] [Google Scholar]
- F. Brezzi and L.D. Marini, Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. [CrossRef] [MathSciNet] [Google Scholar]
- F. Brezzi and L.D. Marini, Virtual Element and Discontinuous Galerkin Methods. In Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. Springer (2014) 209–221. [Google Scholar]
- F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Buffa and P. Monk, Error estimates for the Ultra Weak Variational Formulation of the Helmholtz equation. ESAIM: M2AN 42 (2008) 925–940. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- O. Cessenat, Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques, Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. thesis, Université Paris IX Dauphine (1996). [Google Scholar]
- O. Cessenat and B. Després, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35 (1998) 255–299. [CrossRef] [MathSciNet] [Google Scholar]
- E. Deckers, O. Atak, L. Coox, R. D’Amico, H. Devriendt, S. Jonckheere, K. Koo, B. Pluymers, D. Vandepitte and W. Desmet, The wave based method: An overview of 15 years of research. Innovations in Wave Modelling. Wave Motion 51 (2014) 550–565. [CrossRef] [MathSciNet] [Google Scholar]
- W. Desmet, A wave based prediction technique for coupled vibro-acoustic analysis. Ph.D. thesis, KU Leuven, Belgium, 1998. [Google Scholar]
- C. Farhat, I. Harari and L. Franca, The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6455–6479. [CrossRef] [Google Scholar]
- C. Farhat, I. Harari and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 1389–1419. [CrossRef] [Google Scholar]
- G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225 (2007) 1961–1984. [CrossRef] [MathSciNet] [Google Scholar]
- G. Gabard, Exact integration of polynomial-exponential products with application to wave-based numerical methods. Comm. Numer. Methods Eng. 25 (2009) 237–246. [CrossRef] [Google Scholar]
- A.L. Gain, C. Talischi and G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. [CrossRef] [MathSciNet] [Google Scholar]
- C.J. Gittelson, Plane wave discontinuous Galerkin methods. Master’s thesis, SAM-ETH Zürich, Switzerland (2008). [Google Scholar]
- C.J. Gittelson, R. Hiptmair and I. Perugia, Plane wave discontinuous Galerkin methods: analysis of the h-version. ESAIM: M2AN 43 (2009) 297–332. [CrossRef] [EDP Sciences] [Google Scholar]
- R. Hiptmair, A. Moiola and I. Perugia, Approximation by plane waves. Technical report 2009-27, SAM-ETH Zürich, Switzerland (2009). Available at http://www.sam.math.ethz.ch/reports/2009/27. [Google Scholar]
- R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49 (2011) 264–284. [CrossRef] [MathSciNet] [Google Scholar]
- R. Hiptmair, A. Moiola and I. Perugia, Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes. Appl. Numer. Math. 79 (2014) 79–91. [Google Scholar]
- R. Hiptmair, A. Moiola and I. Perugia, A Survey of Trefftz Methods for the Helmholtz Equation. “Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations”. Edited by G.R. Barrenechea, A. Cangiani, E.H. Geogoulis. In Lect. Notes Comput. Sci. Eng. Springer. Preprint arXiv:1505.04521 [math.NA] (2015). [Google Scholar]
- R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin Methods: Exponential convergence of the hp-version. To appear in Found. Comput. Math. (2015). DOI:10.1007/s10208-015-9260-1 [Google Scholar]
- F. Ihlenburg and I. Babuska, Solution of Helmholtz problems by knowledge-based fem. Comp. Ass. Mech. Eng. Sci. 4 (1997) 397–416. [Google Scholar]
- J. Ladevèze and P. Ladevèze, Bounds of the Poincaré constant with respect to the problem of star-shaped membrane regions. Z. Angew. Math. Phys. 29 (1978) 670–683. [CrossRef] [MathSciNet] [Google Scholar]
- P. Ladevèze and H. Riou, On Trefftz and weak Trefftz discontinuous Galerkin approaches for medium-frequency acoustics. Comput. Methods Appl. Mech. Eng. 278 (2014) 729–743. [CrossRef] [Google Scholar]
- G. Manzini, A. Russo and N. Sukumar. New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24 (2014) 1665–1699. [CrossRef] [MathSciNet] [Google Scholar]
- J.M. Melenk, On Generalized Finite Element Methods. Ph.D. thesis, University of Maryland, 1995. [Google Scholar]
- J.M. Melenk and I. Babuška, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1996) 289–314. [Google Scholar]
- J.M. Melenk and I Babuska, Approximation with harmonic and generalized harmonic polynomials in the partition of unity method. Comp. Ass. Mech. Eng. Sci. 4 (1997) 607–632. [Google Scholar]
- J.M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49 (2011) 1210–1243. [CrossRef] [MathSciNet] [Google Scholar]
- A. Moiola, Trefftz-discontinuous Galerkin methods for time-harmonic wave problems. Ph.D. thesis, Seminar for applied mathematics, ETH Zürich (2011). Available at http://e-collection.library.ethz.ch/view/eth:4515. [Google Scholar]
- A. Moiola, R. Hiptmair and I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62 (2011) 809–837. [Google Scholar]
- P. Monk and D.Q. Wang, A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121–136. [Google Scholar]
- L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286–292. [Google Scholar]
- H. Riou, P. Ladevéze and B. Sourcis, The multiscale VTCR approach applied to acoustics problems. J. Comput. Acoust. 16 (2008) 487–505. [Google Scholar]
- M. Stojek, Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Methods Eng. 41 (1998) 831–849. [CrossRef] [Google Scholar]
- N. Sukumar and A. Tabarraei, Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61 (2004) 2045–2066. [CrossRef] [Google Scholar]
- R. Tezaur and C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Methods Eng. 66 (2006) 796–815. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.