Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
Page(s) 833 - 850
Published online 23 May 2016
  1. D.N. Arnold and G. Awanou, Finite element differential forms on cubical meshes. Math. Comput. 83 (2014) 1551–1570. [Google Scholar]
  2. D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1–155. [CrossRef] [MathSciNet] [Google Scholar]
  3. D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47 (2010) 281–354. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [CrossRef] [Google Scholar]
  5. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, H(div) and H(curl)-conforming VEM. Preprint arXiv:1407.6822 (2014). [Google Scholar]
  6. F. Brezzi, J. Douglas, Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  7. S.H. Christiansen, Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension. Numer. Math. 107 (2007) 87–106. [CrossRef] [MathSciNet] [Google Scholar]
  8. S.H. Christiansen, A construction of spaces of compatible differential forms on cellular complexes. Math. Models Methods Appl. Sci. 18 (2008) 739–757. [CrossRef] [MathSciNet] [Google Scholar]
  9. S.H. Christiansen, Foundations of Finite Element Methods for Wave Equations of Maxwell Type. In Applied Wave Mathematics. Springer, Berlin, Heidelberg (2009) 335–393. [Google Scholar]
  10. S.H. Christiansen, Éléments finis mixtes minimaux sur les polyèdres. C. R. Math. Acad. Sci. Paris 348 (2010) 217–221. [CrossRef] [MathSciNet] [Google Scholar]
  11. S.H. Christiansen, Upwinding in Finite Element Systems of Differential Forms. In Foundations of Computational Mathematics, Budapest 2011. Vol. 403 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge (2013) 45–71. [Google Scholar]
  12. S.H. Christiansen and F. Rapetti, On high order finite element spaces of differential forms. Math. Comput. 85 (2015) 517–547. [CrossRef] [Google Scholar]
  13. S.H. Christiansen, H.Z. Munthe-Kaas and B. Owren, Topics in structure-preserving discretization. Acta Numer. 20 (2011) 1–119. [CrossRef] [MathSciNet] [Google Scholar]
  14. S.H. Christiansen, T.G. Halvorsen and T.M. Sørensen, Stability of an upwind petrov galerkin discretization of convection diffusion equations. Preprint arXiv:1406.0390 (2014). [Google Scholar]
  15. B. Cockburn and W. Qiu, Commuting diagrams for the TNT elements on cubes. Math. Comput. 83 (2014) 603–633. [Google Scholar]
  16. R. Hiptmair, Canonical construction of finite elements. Math. Comput. 68 (1999) 1325–1346. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.-C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  18. P.-A. Raviart and J.M. Thomas, A Mixed Finite Element Method for 2nd Order Elliptic Problems. In Mathematical aspects of finite element methods. Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975. Vol. 606 of Lect. Notes Math. Springer, Berlin (1977) 292–315. [Google Scholar]
  19. M.E. Taylor, Partial Differential Equations I: Basic Theory. Vol. 115 of Appl. Math. Sci. Springer-Verlag, New York (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you