Issue
ESAIM: M2AN
Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
Page(s) 809 - 832
DOI https://doi.org/10.1051/m2an/2015087
Published online 23 May 2016
  1. P.M. Adler, J.-F. Thovert and V.V. Mourzenko, Fractured Porous Media. Oxford University Press (2013). [Google Scholar]
  2. O. Al-Hinai, S. Srinivasan and M.F. Wheeler, Mimetic finite differences for flow in fractures from microseismic data. In SPE Reservoir Simulation Symposium, 23-25 February, Houston, Texas, USA. Society of Petroleum Engineers (2015). [Google Scholar]
  3. C. Alboin, J. Jaffré, J.E. Roberts, X. Wang and C. Serres, Domain decomposition for some transmission problems in flow in porous media. In vol. 552 of Lecture Notes Phys. Springer, Berlin (2000) 22–34. [Google Scholar]
  4. P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  5. P.F. Antonietti, L. Beirão da Veiga, C. Lovadina and M. Verani, Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems. SIAM J. Numer. Anal. 51 (2013) 654–675. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.F. Antonietti, L. Beirão da Veiga, and M. Verani, A mimetic discretization of elliptic obstacle problems. Math. Comput. 82 (2013) 1379–1400. [CrossRef] [Google Scholar]
  7. P.F. Antonietti, N. Bigoni and M. Verani, Mimetic discretizations of elliptic control problems. J. Sci. Comput. 56 (2013) 14–27. [CrossRef] [MathSciNet] [Google Scholar]
  8. P.F. Antonietti, L. Beirão da Veiga, N. Bigoni and M. Verani, Mimetic finite differences for nonlinear and control problems. Math. Models Methods Appl. Sci. 24 (2014) 1457–1493. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.F. Antonietti, N. Bigoni and M. Verani, Mimetic finite difference method for shape optimization problems. Lect. Notes Comput. Sci. Eng. 103 (2015) 125–132. [CrossRef] [Google Scholar]
  10. P.F. Antonietti, N. Bigoni and M. Verani, Mimetic finite difference approximation of quasilinear elliptic problems. Calcolo 52 (2015) 45–67. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Bear, C.-F. Tsang and G. de Marsily, Flow and contaminant transport in fractured rock. Academic Press, San Diego (1993). [Google Scholar]
  12. L. Beirão da Veiga, K. Lipnikov and G. Manzini, Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49 (2011) 1737–1760. [CrossRef] [Google Scholar]
  13. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [CrossRef] [Google Scholar]
  14. L. Beirão da Veiga, C. Lovadina and D. Mora, Numerical results for mimetic discretization of Reissner-Mindlin plate problems. Calcolo 50 (2013) 209–237. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Beirao da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. Springer (2014). [Google Scholar]
  16. M.F. Benedetto, S. Berrone, S. Pieraccini and S. Scialò, The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Engrg. 280 (2014) 135–156. [CrossRef] [MathSciNet] [Google Scholar]
  17. M.F. Benedetto, S. Berrone and S. Scialò, A globally conforming method for solving flow in discrete fracture networks using the virtual element method. Finite Elements Anal. Design 109 (2016) 23–36. [CrossRef] [Google Scholar]
  18. M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems. Acta numerica 14 (2005) 1–137. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Berrone, S. Pieraccini and S. Scialò, On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35 (2013) A908–A935. [CrossRef] [Google Scholar]
  20. S. Berrone, S. Pieraccini and S. Scialò, A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 35 (2013) B487–B510. [CrossRef] [Google Scholar]
  21. S. Berrone, S. Pieraccini and S. Scialò, An optimization approach for large scale simulations of discrete fracture network flows. J. Comput. Phys. 256 (2014) 838–853. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Berrone, S. Pieraccini, S. Scialò and F. Vicini, A parallel solver for large scale DFN flow simulations. SIAM J. Sci. Comput. 37 (2015) C285–C306. [CrossRef] [Google Scholar]
  23. K. Brenner, M. Groza, C. Guichard, G. Lebeau and R. Masson, Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. In Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, edited by J. Fuhrmann, M. Ohlberger and C. Rohde. Springer (2014) 527–535. [Google Scholar]
  24. K. Brenner, M. Groza, C. Guichard, G. Lebeau and R. Masson, Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. Technical Report. HAL archives-ouvertes hal-01097704 (2014). [Google Scholar]
  25. K Brenner, J Hennicker, R Masson and P Samier, Gradient discretization of hybrid dimensional Darcy flows in fractured porous media with discontinuous pressures at the matrix fracture interfaces. In MAMERN VI-2015 HAL-01147495 (2015). [Google Scholar]
  26. F. Brezzi and A. Buffa, Innovative mimetic discretizations for electromagnetic problems. J. Comput. Appl. Math. 234 (2010) 1980–1987. [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. [CrossRef] [MathSciNet] [Google Scholar]
  28. F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533–1551. [CrossRef] [MathSciNet] [Google Scholar]
  29. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16 (2006) 275–297. [CrossRef] [MathSciNet] [Google Scholar]
  30. F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3682–3692. [CrossRef] [MathSciNet] [Google Scholar]
  31. F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  32. F. Brezzi, A. Buffa and G. Manzini, Mimetic scalar products of discrete differential forms. J. Comput. Phys. 257 (2014) 1228–1259. [CrossRef] [MathSciNet] [Google Scholar]
  33. B. da Veiga Lourenco, K. Lipnikov and G. Manzini, The mimetic finite difference method for elliptic problems. Vol. 11 of MS&A. Model. Simul. Appl. Springer, Cham (2014). [Google Scholar]
  34. C. D’Angelo and A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: M2AN 46 (2012) 465–489. [CrossRef] [EDP Sciences] [Google Scholar]
  35. J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. [CrossRef] [MathSciNet] [Google Scholar]
  36. J. Droniou, R. Eymard, T. Gallouet and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. [CrossRef] [MathSciNet] [Google Scholar]
  37. J. Droniou, R. Eymard and R. Herbin, Gradient schemes: generic tools for the numerical analysis of diffusion equations. To appear in Special issue – Polyhedral discretization for PDE: ESAIM: M2AN 50 (2016) Doi:10.1051/m2an/2015079. [Google Scholar]
  38. G.D. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces. In Partial differential equations and calculus of variations. Vol. 1357 of Lect. Notes Math. Springer, Berlin (1988) 142–155. [Google Scholar]
  39. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In Techniques of Scientific Computing, Part III, Handbook of Numerical Analysis, VII. Edited by P.G. Ciarlet and J.-L. Lions. North Holland (2000) 713–1020. [Google Scholar]
  40. A. Fumagalli and A. Scotti, A numerical method for two-phase flow in fractured porous media with non-matching grids. Computational Methods in Geologic CO2 Sequestration. Adv. Water Res. 62 (2013) 454–464. [CrossRef] [Google Scholar]
  41. G. Guennebaud, Benoît Jacob, et al., Eigen v3. http://eigen.tuxfamily.org (2010). [Google Scholar]
  42. H. Hægland, A. Assteerawatt, H.K. Dahle, G.T. Eigestad and R. Helmig, Comparison of cell-and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture–matrix system. Adv. Water Res. 32 (2009) 1740–1755. [CrossRef] [Google Scholar]
  43. J. Jaffré, M. Mnejja and J.E. Roberts, A discrete fracture model for two-phase flow with matrix-fracture interaction. Proc. Comput. Sci. 4 (2011) 967–973. [CrossRef] [Google Scholar]
  44. M. Karimi-Fard, L.J. Durlofsky, K. Aziz, et al., An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9 (2004) 227–236. [CrossRef] [Google Scholar]
  45. K. Lipnikov, J.D. Moulton and D. Svyatskiy, A multilevel multiscale mimetic (M3) method for two-phase flows in porous media. J. Comput. Phys. 227 (2008) 6727–6753. [CrossRef] [MathSciNet] [Google Scholar]
  46. K. Lipnikov, G. Manzini and M. Shashkov, Mimetic finite difference method. Physics-compatible numerical methods. J. Comput. Phys. 257 (2014) 1163–1227. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  47. B.T. Mallison, M.H. Hui and W. Narr, Practical gridding algorithms for discrete fracture modeling workflows. In 12th European Conference on the Mathematics of Oil Recovery (2010). [Google Scholar]
  48. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. [CrossRef] [MathSciNet] [Google Scholar]
  49. H. Mustapha, A Gabriel-Delaunay triangulation of 2D complex fractured media for multiphase flow simulations. Comput. Geosci. 18 (2014) 989–1008. [CrossRef] [Google Scholar]
  50. J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods. In Vol. 2 of Handbook of Numerical Analysis. Finite Element Methods (Part I). Elsevier (1991) 523–639. [Google Scholar]
  51. The CGAL Project, CGAL User and Reference Manual. CGAL Editorial Board, 4.6 edition (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you