Free Access
Issue |
ESAIM: M2AN
Volume 50, Number 4, July-August 2016
|
|
---|---|---|
Page(s) | 1035 - 1055 | |
DOI | https://doi.org/10.1051/m2an/2015062 | |
Published online | 23 June 2016 |
- R.A. Adams, Sobolev Spaces. Acadamic Press, INC (1978). [Google Scholar]
- R. Araya, A.H. Poza1 and F. Valentin, On a hierarchical error estimator combined with a stabilized method for the Navier–Stokes equations. Numer. Methods Partial Differ. Eq. 28 (2012) 782–806. [CrossRef] [Google Scholar]
- I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 4 (1978) 736–754. [Google Scholar]
- A. Baker, V.A. Dougalis and O.A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier–Stokes equations. Math. Comput. 39 (1982) 339–375. [CrossRef] [MathSciNet] [Google Scholar]
- E. Barragy and G.F. Carey, Stream Function-Vorticity Driven Cavity Solution using p Finite Elements. Comput. Fluids 26 (1997) 453–468. [CrossRef] [Google Scholar]
- C. Bernardi, F. Hecht and R. Verfürth, A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions. ESAIM: M2AN 43 (2009) 1185–1201. [CrossRef] [EDP Sciences] [Google Scholar]
- F. Brezzi, J. Rappaz and P.-A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
- C.H. Bruneau and M. Saad, The 2D lid-driven cavity problem revisited. Comput. Fluids 35 (2006) 326–348. [CrossRef] [Google Scholar]
- O.R. Burggraf, Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24 (1996) 113–151. [CrossRef] [Google Scholar]
- A.-L. Chaillou and M. Suri, Computable error estimators for the approximation of nonlinear problems by linearized models. Comput. Methods Appl. Mech. Eng. 196 (2006) 210–224. [CrossRef] [Google Scholar]
- A.-L. Chaillou and M. Suri, A posteriori estimation of the linearization error for strongly monotone nonlinear operators. Comput. Methods Appl. Mech. Eng. 205 (2007) 72–87. [Google Scholar]
- A. El Akkad, A. El Khalfi and N. Guessous, An a posteriori estimate for mixed finite element approximations of the Navier–Stokes equations. J. Korean Math. Soc. 48 (2011) 529–550. [CrossRef] [MathSciNet] [Google Scholar]
- L. El Alaoui, A. Ern and M. Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Eng. 200 (2011) 2782–2795. [Google Scholar]
- A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAMJ. Sci. Comput. 35 (2013) A1761–A1791. [CrossRef] [Google Scholar]
- E. Erturk, Discussions on driven cavity flow. Int. J. Numer. Meth. Fluids 60 (2009) 747–774. [Google Scholar]
- E. Erturk, T.C. Corke and C. Gokcol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48 (2005) 747–774. [CrossRef] [Google Scholar]
- V. Ervin, W. Layton and J. Maubach, A posteriori error estimators for a two-level finite element method for the Navier–Stokes equations. I.C.M.A. Tech. Report, University of Pittsburgh (1995) [Google Scholar]
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Springer-Verlag (1986). [Google Scholar]
- F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–266. [CrossRef] [MathSciNet] [Google Scholar]
- H. Jin and S. Prudhomme, A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 159 (1998) 19–48. [CrossRef] [Google Scholar]
- V. John, Residual a posteriori error estimates for two-level finite element methods for the Navier–Stokes equations. Appl. Numer. Math. 37 (2001) 501–518. [CrossRef] [Google Scholar]
- M. Kawaguti, Numerical Solution of the Navier–Stokes Equations for the Flow in a Two-Dimensional Cavity. J. Phys. Soc. Japan 16 (1961) 2307–2315. [CrossRef] [MathSciNet] [Google Scholar]
- O. Pironneau, Méthodes des éléments finis pour les fluides. Vol. 7 of Collection Recherches en Mathématiques Appliquées. Masson (1988). [Google Scholar]
- J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213–231. [CrossRef] [MathSciNet] [Google Scholar]
- S. Prudhomme and J.T. Oden, Residual a posteriori error estimates for two-level finite element methods for the Navier–Stokes equations. Finite Elements in Analysis and Design 33 (1999) 247–262. [CrossRef] [MathSciNet] [Google Scholar]
- R. Schreiber and H.B. Keller, Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49 (1983) 310–333. [CrossRef] [Google Scholar]
- R. Verfürth, A Posteriori Error Estimation Techniques For Finite Element Methods. Numer. Math. Sci. Comput. Oxford (2013). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.