Free Access
Volume 50, Number 4, July-August 2016
Page(s) 1057 - 1082
Published online 27 June 2016
  1. Y. Achdou and O. Pironneau, A fast solver for Navier stokes equations in the laminar regime using mortar finite element and boundary element methods. SIAM J. Numer. Anal. 32 (1995) 985–1016. [CrossRef] [MathSciNet] [Google Scholar]
  2. Y. Achdou, Y. Maday and O.B. Widlund, Iterative substructuring preconditioners for mortar element methods in two dimensions. SIAM J. Numer. Anal. 36 (1999) 551–580. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Antonietti, B. Ayuso de Dios, S. Bertoluzza and M. Pennacchio, Substructuring preconditioners for an hp domain decomposition method with interior penalty mortaring. Calcolo 52 (2015) 289–316. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Ashby, M. Holst, A. Manteuffel and P. Saylor, The role of the inner product in stopping criteria for conjugate gradient iterations. BIT Numer. Math. 41 (2001) 26–52. [CrossRef] [Google Scholar]
  5. I. Babuška and M. Suri, The p and h-p versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994) 578–632. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Beirăo da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [CrossRef] [Google Scholar]
  7. Z. Belhachmi and C. Bernardi, The mortar spectral element method for fourth-order problems. Comput. Methods Appl. Mech. Eng. 116 (1994) 53–58. [CrossRef] [Google Scholar]
  8. F. Ben Belgacem, P. Seshaiyer and M. Suri, Optimal convergence rates of hp mortar finite element methods for second-order elliptic problems. ESAIM: M2AN 34 (2000) 591–608. [CrossRef] [EDP Sciences] [Google Scholar]
  9. F. Ben Belgacem, A. Buffa and Y. Maday, The mortar finite element method for 3d maxwell equations: First results. SIAM J. Numer. Anal. 39 (2001) 880–901. [CrossRef] [Google Scholar]
  10. C. Bernardi, Y. Maday and A.T. Patera, A new non conforming approach to domain decomposition: The mortar element method. In Collège de France Seminar, edited by H. Brezis and J.-L. Lions. This paper appeared as a technical report about five years earlier. Pitman (1994). [Google Scholar]
  11. S. Bertoluzza, Substructuring preconditioners for the three fields domain decomposition method. Math. Comput. 73 (2004) 659–689. [CrossRef] [Google Scholar]
  12. S. Bertoluzza and S. Falletta, Analysis of some injection bounds for Sobolev spaces by wavelet decomposition. C. R. Math. 349 (2011) 421–428. [CrossRef] [Google Scholar]
  13. S. Bertoluzza and M. Pennacchio, Preconditioning the mortar method by substructuring: the high order case. Appl. Numer. Anal. Comput. Math. 1 (2004) 434–454. [CrossRef] [MathSciNet] [Google Scholar]
  14. P.E. Bjørstad and O.B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23 (1986) 1093–1120. [Google Scholar]
  15. J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring I. Math. Comput. 47 (1986) 103–134. [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Brenner, The condition number of the schur complement in domain decomposition. Numer. Math. 83 (1999) 127–203. [Google Scholar]
  17. C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, Spectral Methods. Scientific Computation. Springer (2006). [Google Scholar]
  18. N. Dokeva, M. Dryja and W. Proskurowski, A FETI-DP preconditioner with a special scaling for mortar discretization of elliptic problems with discontinuous coefficients. SIAM J. Numer. Anal. 44 (2006) 283–299. [CrossRef] [Google Scholar]
  19. M. Dryja, A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math. 39 (1982) 51–64. [CrossRef] [MathSciNet] [Google Scholar]
  20. G.H. Golub and C.F. Van Loan, Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. 3rd edition. Johns Hopkins University Press, Baltimore, MD (1996). [Google Scholar]
  21. B. Guo and W. Cao, A preconditioner for the h-p version of the finite element method in two dimensions. Numer. Math. 75 (1996) 59–77. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Kim, A FETI-DP preconditioner for mortar methods in three dimensions. Electron. Trans. Numer. Anal. 26 (2007) 103–120. [MathSciNet] [Google Scholar]
  23. H. Kim and C. Lee, A preconditioner for the FETI-DP formulation with mortar methods in two dimensions. SIAM J. Numer. Anal. 42 (2005) 2159–2175. [CrossRef] [Google Scholar]
  24. H.H. Kim and O.B. Widlund, Two-level schwarz algorithms with overlapping subregions for mortar finite elements. SIAM J. Numer. Anal. 44 (2006) 1514–1534. [CrossRef] [Google Scholar]
  25. H. Kim, M. Dryja and O. Widlund, A BDDC method for mortar discretizations using a transformation of basis. SIAM J. Numer. Anal. 4 (2009) 136–157. [CrossRef] [Google Scholar]
  26. J.L. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications. Springer (1972). [Google Scholar]
  27. M. Pennacchio, The mortar finite element method for the cardiac “bidomain” model of extracellular potential. J. Sci. Comput. 20 (2004) 191–210. [CrossRef] [Google Scholar]
  28. M. Pennacchio and V. Simoncini, Substructuring preconditioners for mortar discretization of a degenerate evolution problem. J. Sci. Comput. 36 (2008) 391–419. [CrossRef] [Google Scholar]
  29. C. Prud’homme, A strategy for the resolution of the tridimensionnal incompressible Navier-Stokes equations. In vol. 10 of Méthodes itératives de décomposition de domaines et communications en calcul parallèle. Calculateurs Parallèles Réséaux et Systèmes répartis. Hermes (1998) 371–380. [Google Scholar]
  30. C. Prud’Homme, V. Chabannes, V. Doyeux, M. Ismail, A. Samake and G. Pena, Feel++: A Computational Framework for Galerkin Methods and Advanced Numerical Methods (2012). [Google Scholar]
  31. C. Prud’homme, V. Chabannes, S. Veys, V. Huber, C. Daversin, A. Ancel, R. Tarabay, V. Doyeux, J.-B. Wahl, C. Trophime, A. Samake, G. Doll and A. Ancel. feelpp v0.98.0. (2014). [Google Scholar]
  32. A. Samake, S. Bertoluzza, M. Pennacchio and C. Prud’homme, Implementation and numerical results of substructuring preconditioners for the h-p fem mortar in 2d. In preparation. [Google Scholar]
  33. C. Schwab, p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Numer. Math. Sci. Comput. Clarendon Press (1998). [Google Scholar]
  34. P. Seshaiyer and M. Suri, Convergence results for non-conforming hp methods: The mortar finite element method. In vol. 218 of Contemp. Math. AMS (1998) 453–459. [Google Scholar]
  35. P. Seshaiyer and M. Suri, Uniform hp convergence results for the mortar finite element method. Math. Comput. 69 (2000) 521–546. [CrossRef] [Google Scholar]
  36. B. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition, Vol. 17 of Lect. Notes Comput. Sci. Eng. Springer (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you