Free Access
Issue
ESAIM: M2AN
Volume 50, Number 4, July-August 2016
Page(s) 1107 - 1136
DOI https://doi.org/10.1051/m2an/2015071
Published online 07 July 2016
  1. R. Andreev and C. Tobler, Multilevel preconditioning and low rank tensor iteration for space-time simultaneous discretizations of parabolic PDEs. Numer. Linear Algebra Appl. 22 (2015) 317–337. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Bachmayr, Adaptive Low-Rank Wavelet Methods and Applications to Two-Electron Schrödinger Equations. Ph.D. thesis, RWTH Aachen (2012). [Google Scholar]
  3. M. Bachmayr and W. Dahmen, Adaptive low-rank methods: Problems on Sobolev spaces. Preprint arXiv:1407.4919 [math.NA] (2014). [Google Scholar]
  4. M. Bachmayr and W. Dahmen, Adaptive near-optimal rank tensor approximation for high-dimensional operator equations. Found. Comput. Math. 15 (2015) 839–898. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Ballani and L. Grasedyck, A projection method to solve linear systems in tensor format. Numer. Linear Algebra Appl. 20 (2013) 27–43. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Beylkin and L. Monzón, Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28 (2010) 131–149. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Billaud-Friess, A. Nouy and O. Zahm, A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems. ESAIM: M2AN 48 (2014) 1777–1806. [CrossRef] [EDP Sciences] [Google Scholar]
  8. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. 3rd edition. Vol. 15 of Texts Appl. Math. Springer (2008) [Google Scholar]
  9. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates. Math. Comput. 70 (2001) 27–75. [CrossRef] [MathSciNet] [Google Scholar]
  10. W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2 (1996) 341–361. [MathSciNet] [Google Scholar]
  11. W. Dahmen, R. DeVore, L. Grasedyck and E. Süli, Tensor-sparsity of solutions to high-dimensional elliptic partial differential equations. Found. Comput. Math. (2015) DOI: 10.1007/s10208-015-9265-9. [Google Scholar]
  12. T.J. Dijkema, C. Schwab and R. Stevenson, An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30 (2009) 423–455. [CrossRef] [MathSciNet] [Google Scholar]
  13. S.V. Dolgov and D.V. Savostyanov, Alternating minimal energy methods for linear systems in higher dimensions. SIAM J. Sci. Comput. 36 (2014) A2248–A2271. [CrossRef] [Google Scholar]
  14. G.C. Donovan, J.S. Geronimo and D.P. Hardin, Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (1999) 1029–1056. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Grasedyck, Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 72 (2004) 247–265. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Grasedyck, Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31 (2010) 2029–2054. [CrossRef] [Google Scholar]
  17. L. Grasedyck, D. Kressner and C. Tobler. A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36 (2013) 53–78. [CrossRef] [MathSciNet] [Google Scholar]
  18. W. Hackbusch, Entwicklungen nach Exponentialsummen. Technical Report 4, MPI Leipzig (2005). [Google Scholar]
  19. W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus. Vol. 42 of Springer Series Comput. Math. Springer-Verlag Berlin Heidelberg (2012). [Google Scholar]
  20. W. Hackbusch and B.N. Khoromskij, Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. Part I. Separable approximation of multi-variate functions. Computing 76 (2006) 177–202. [CrossRef] [MathSciNet] [Google Scholar]
  21. W. Hackbusch and S. Kühn, A new scheme for the tensor representation. J. Fourier Anal. Appl. 15 (2009) 706–722. [CrossRef] [MathSciNet] [Google Scholar]
  22. B.N. Khoromskij, Tensor-structured preconditioners and approximate inverse of elliptic operators in Rd. Constr. Approx. 30 (2009) 599–620. [CrossRef] [MathSciNet] [Google Scholar]
  23. B.N. Khoromskij, O(dlog N)-quantics approximation of N-d tensors in high-dimensional numerical modeling. Constr. Approx. 34 (2011) 257–280. [CrossRef] [MathSciNet] [Google Scholar]
  24. D. Kressner and C. Tobler. Preconditioned low-rank methods for high-dimensional elliptic PDE eigenvalue problems. Comput. Methods Appl. Math. 11 (2011) 363–381. [CrossRef] [MathSciNet] [Google Scholar]
  25. D. Kressner and A. Uschmajew, On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems. Preprint arXiv:1406.7026 [math.NA] (2014). [Google Scholar]
  26. D. Kressner, M. Steinlechner and A. Uschmajew, Low-rank tensor methods with subspace correction for symmetric eigenvalue problems. SIAM J. Sci. Comput. 36 (2014) A2346–A2368. [CrossRef] [Google Scholar]
  27. I.V. Oseledets, Tensor-train decomposition. SIAM J. Sci. Comput. 33 (2011) 2295–2317. [CrossRef] [MathSciNet] [Google Scholar]
  28. I. Oseledets and E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Scientific Comput. 31 (2009) 3744–3759. [CrossRef] [Google Scholar]
  29. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions. Vol. 20 of Springer Series Comput. Math. Springer-Verlag (1993). [Google Scholar]
  30. L.R. Tucker, Some mathematical notes on three-mode factor analysis. Psychometrika 31 (1966) 279–311. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you