Free Access
Issue
ESAIM: M2AN
Volume 50, Number 4, July-August 2016
Page(s) 965 - 993
DOI https://doi.org/10.1051/m2an/2015061
Published online 16 June 2016
  1. D.S. Balsara, Divergence-free reconstruction of magnetic fields and WENO schemes for magne tohydrodynamics. J. Comput. Phys. 228 (2009) 5040–5056. [CrossRef] [MathSciNet] [Google Scholar]
  2. D.S. Balsara and D.S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149 (1999) 270–292. [Google Scholar]
  3. T. Barth, On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems, The IMA Volumes in Mathematics and its Applications, IMA volume on Compatible Spatial Discretizations, edited by Arnold, Bochev and Shashkov 142 (2005) 69–88. [Google Scholar]
  4. N. Besse and D. Kröner, Convergence of the locally divergence free discontinuous Galerkin methods for induction equations for the 2D-MHD system. ESAIM: M2AN 39 (2005) 1117–1202. [CrossRef] [EDP Sciences] [Google Scholar]
  5. J.U. Brackbill and D.C. Barnes, The effect of nonzero ∇·B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35 (1980) 426–430. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Brezzi, J. Douglas, Jr. and L.D. Marini, Two Families of Mixed Finite Elements for Second Order Elliptic Problems. Numer. Math. 47 (1985) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Cockburn, An introduction to the discontinuous Galerkin method for convection-dominated problems. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Vol. 169 of Lect. Notes Math. (1998) 151–268. [Google Scholar]
  8. C.R. Evans and J.F. Hawley, Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J. 322 (1988) 659–677. [Google Scholar]
  9. F.G. Fuchs, K.H. Karlsen, S. Mishra and N.H. Risebro, Stable upwind schemes for the magnetic induction equation. ESAIM: M2AN 43 (2009) 825–852. [CrossRef] [EDP Sciences] [Google Scholar]
  10. T.A. Gardiner and J.M. Stone, An unsplit Godunov method for ideal MHD via constrained transport. J. Comput. Phys. 205 (2005) 509–539. [Google Scholar]
  11. S.K. Godunov, Symmetric form of the equations of magnetohydrodynamics. Numer. Methods Mech. Continuum Medium 1 (1972) 26–34. [Google Scholar]
  12. S. Li, High order central scheme on overlapping cells for magnetohydrodynamic flows with and without constrained transport method. J. Comput. Phys. 227 (2008) 7368–7393. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Li and L. Xu, Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231 (2012) 2655–2675. [CrossRef] [MathSciNet] [Google Scholar]
  14. F. Li, L. Xu and S. Yakovlev, Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230 (2011) 4828–4847. [CrossRef] [MathSciNet] [Google Scholar]
  15. Y. Liu, C.-W. Shu, E. Tadmor and M. Zhang, Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45 (2007) 2442–2467. [CrossRef] [MathSciNet] [Google Scholar]
  16. Y. Liu, C.-W. Shu, E. Tadmor and M. Zhang, L2 stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. ESAIM: M2AN 42 (2008) 593–607. [CrossRef] [EDP Sciences] [Google Scholar]
  17. S. Mishra and M. Svärd, On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Num. Math. 50 (2010) 85–108. [CrossRef] [Google Scholar]
  18. K.W. Morton and R.L. Roe, Vorticity-preserving Lax-Wendroff-type schemes for the system wave equation. SIAM J. Sci. Comput. 23 (2001) 170–192. [CrossRef] [MathSciNet] [Google Scholar]
  19. P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite Element Methods. Springer (1997) 292–315. [Google Scholar]
  20. J.A. Rossmanith, An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows. SIAM J. Sci. Comput. 28 (2006) 1766–1797. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.A. Rossmanith, High-order discontinuous Galerkin finite element methods with globally divergence-free constrained transport for ideal MHD. Preprint (2013). [Google Scholar]
  22. G. Tóth, The ∇·B = 0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161 (2000) 605–652. [Google Scholar]
  23. Q. Zhang and C-W. Shu, Error estimates to smooth solutions of Runge−Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641–666. [Google Scholar]
  24. Q. Zhang and C-W. Shu, Stability analysis and a priori error estimates to the third order explicit Runge−Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numerical Anal. 48 (2010) 1038–1063. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you