Free Access
Issue
ESAIM: M2AN
Volume 50, Number 5, September-October 2016
Page(s) 1425 - 1455
DOI https://doi.org/10.1051/m2an/2015080
Published online 05 August 2016
  1. A. Aguiar and R. Fosdick, A constitutive model for a linearly elastic peridynamic body. Math. Mech. Solids 19 (2013) 502–523. [CrossRef] [Google Scholar]
  2. B. Alali and R. Lipton, Multiscale Analysis of Heterogeneous Media in the Peridynamic formulation. J. Elasticity 106 (2012) 71-103. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [Google Scholar]
  4. F. Andreu-Vaillo, J.M. Mazen, J.D. Rossi and J.J. Toledo-Melero, Nonlocal Diffusion Problems. In vol. 165 of Math. Surveys Monogr. AMS (2010). [Google Scholar]
  5. P.W. Bates, P.C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138 (1997) 105–136. [CrossRef] [Google Scholar]
  6. F. Bobaru and S.A. Silling, Peridynamic 3D problems of nanofiber networks and carbon nanotube-reinforced composites. Materials and Design: Proceedings of Numiform. Amer. Institute Phys. (2004) 1565–1570. [Google Scholar]
  7. F. Bobaru, S.A. Silling and H. Jiang, Peridynamic fracture and damage modeling of membranes and nanofiber networks. Vol. 5748 of Proc. of the XI International Conference on Fracture. Turin, Italy (2005) 1–6. [Google Scholar]
  8. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011). [Google Scholar]
  9. G.W. Clark and R.E. Showalter, Two-scale convergence of a model for flow in a partially fissured medium. Electron. J. Differ. Eq. 1999 (1999) 1–20. [Google Scholar]
  10. Q. Du, Nonlocal calculus of variations and well-posedness of peridynamics. In Handbook of Peridynamic Modeling, edited by F. Bobaru, J. Foster, P. Geubelle and S. Silling. CRC Press (2016). [Google Scholar]
  11. Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (2012) 667–696. [CrossRef] [MathSciNet] [Google Scholar]
  12. Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J. Elasticity 113 (2013) 193–217. [CrossRef] [MathSciNet] [Google Scholar]
  13. Q. Du, Z. Huang and R. Lehoucq, Nonlocal convection-diffusion volume-constrained problems and jump processes. Disc. Cont. Dyn. Sys. B 19 (2014) 373–389. [Google Scholar]
  14. A. Visintin, Towards a two-scale calculus. ESAIM: COCV 12 (2006) 371–397. [CrossRef] [EDP Sciences] [Google Scholar]
  15. E. Weinan, Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math. 45 (1992) 301–326. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Emmrich, R.B. Lehoucq and D. Puhst, Peridynamics: A Nonlocal Continuum Theory. Meshfree Methods for Partial Differential Equations VI. Lect. Notes Comput Sci Eng. 89 (2013) 45–65. [CrossRef] [Google Scholar]
  17. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer Verlag, New York (2000). [Google Scholar]
  18. W. Gerstle, N. Sau and S.A. Silling, Peridynamic modeling of plain and reinforced concrete structures. SMiRT18: 18th lnt. Conf. Struct. Mech. React. Technol. Beijing (2005). [Google Scholar]
  19. W. Hu, Y.D. Ha and F. Bobaru, Modeling dynamic fracture and damage in a fiber-reinforced composite lamina with peridynamics. Int. J. Multiscale Comput. Eng. 9 (2011) 707–726. [CrossRef] [Google Scholar]
  20. L. Ignat and J.D. Rossi, A nonlocal convection-diffusion equation. J. Funct. Anal. 251 (2007) 399–437. [Google Scholar]
  21. B. Kilic, A. Agwai and E. Madenci, Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos. Struct. 90 (2009) 141–151. [CrossRef] [Google Scholar]
  22. R.B. Lehoucq and S.A. Silling, Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56 (2008) 1566–1577. [CrossRef] [MathSciNet] [Google Scholar]
  23. D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002) 35–86. [Google Scholar]
  24. T. Mengesha and Q. Du, Nonlocal constrained value problems for a linear peridynamic Navier equation. J. Elasticity 116 (2014) 27–51. [CrossRef] [MathSciNet] [Google Scholar]
  25. T. Mengesha and Q. Du, Multiscale analysis of a linear peridynamics solid. Commun. Math. Sci. 13 (2015) 1193 –1218. [CrossRef] [MathSciNet] [Google Scholar]
  26. F. Neubrander, Integrated semigroups and their application to the abstract Cauchy problem. Pacific J. Math. 135 (1988) 111–157. [CrossRef] [MathSciNet] [Google Scholar]
  27. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag (1983). [Google Scholar]
  29. B. Schweizer and Veneroni, Homogenization of plasticity equations with two-scale convergence methods. Appl. Anal. Int. J. 94 (2015) 375–398. [Google Scholar]
  30. R.E. Showalter, Distributed microstructure models of porous media. Flow in Porous Media: proceedings of the Oberwolfach Conference (1992), edited by U. Hornung. Vol. 114 of International Series of Numerical Mathematics. Birkhauser Verlag Basel (1993) 21–27. [Google Scholar]
  31. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48 (2000) 175–209. [Google Scholar]
  32. S.A. Silling, Linearized theory of peridynamic states. J. Elast. 99 (2010) 85–111. [CrossRef] [Google Scholar]
  33. S.A. Silling, M. Epton, O. Weckner, J. Xu and E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88 (2007) 151–184. [Google Scholar]
  34. L. Tartar, Memory effects and homogenization. Arch. Rational Mech. Anal. 111 (1990) 121–133. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you