Free Access
Issue
ESAIM: M2AN
Volume 50, Number 5, September-October 2016
Page(s) 1403 - 1424
DOI https://doi.org/10.1051/m2an/2015084
Published online 04 August 2016
  1. X. Blanc, C. Le Bris and P.-L. Lions, A definition of the ground state energy for systems composed of infinitely many particles. Commun. Partial Differ. Eq. 28 (2003) 439–475. [CrossRef] [Google Scholar]
  2. C. Brouder, C. Panati, M. Calandra, C. Mourougane and N. Marzari, Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98 (2007) 046402. [CrossRef] [PubMed] [Google Scholar]
  3. E. Cancès, SCF algorithms for Hartree−Fock electronic calculations. In Mathematical Models and Methods for Ab Initio Quantum Chemistry, edited by M. Defranceschi and C. Le Bris. Springer (2000). [Google Scholar]
  4. E. Cancès, A. Deleurence and M. Lewin, A new approach to the modeling of local defects in crystals: the reduced Hartree−Fock case. Commun. Math. Phys. 281 (2008) 129–177. [CrossRef] [Google Scholar]
  5. I. Catto, C. Le Bris and P.-L. Lions, On the thermodynamic limit for Hartree−Fock type models. Ann. Inst. Henri Poincaré (C) 18 (2001) 687–760. [CrossRef] [Google Scholar]
  6. M.L. Cohen and T.K. Bergstresser, Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and Zinc-blende structures. Phys. Rev. 141 (1966) 789–796. [CrossRef] [Google Scholar]
  7. J. Des Cloizeaux, Analytical properties of n-dimensional energy bands and Wannier functions. Phys. Rev. 135 (1964) A698–A707. [CrossRef] [Google Scholar]
  8. J. Des Cloizeaux, Energy bands and projection operators in a crystal: Analytic and asymptotic properties. Phys. Rev. 135 (1964) A685–A697. [CrossRef] [Google Scholar]
  9. T. Kato, Perturbation Theory for Linear Operators. Springer Science & Business Media (2012). [Google Scholar]
  10. W. Kohn, Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115 (1959) 809–821. [CrossRef] [MathSciNet] [Google Scholar]
  11. E.H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23 (1977) 22–116. [CrossRef] [Google Scholar]
  12. H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976) 5188–5192. [Google Scholar]
  13. G. Panati, Triviality of Bloch and Bloch–Dirac bundles. Ann. Henri Poincaré 8 (2007) 995–1011. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV Analysis of Operators. Academic Press (1978). [Google Scholar]
  15. B. Simon, Trace Ideals and Their Applications. Mathematical Surveys and Monographs. American Mathematical Society (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you