Free Access
Issue |
ESAIM: M2AN
Volume 50, Number 6, November-December 2016
|
|
---|---|---|
Page(s) | 1659 - 1697 | |
DOI | https://doi.org/10.1051/m2an/2016003 | |
Published online | 07 October 2016 |
- A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4 (2005) 447–459. [Google Scholar]
- A. Abdulle, The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs, in Multiple scales problems in biomathematics, mechanics, physics and numerics. Vol. 31 of GAKUTO Internat. Ser. Math. Sci. Appl. Gakkōtosho, Tokyo (2009) 133–181. [Google Scholar]
- A. Abdulle, A priori and a posteriori error analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM 16 (2011) 280–305. [CrossRef] [Google Scholar]
- A. Abdulle, W.E.B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21 (2012) 1–87. [CrossRef] [MathSciNet] [Google Scholar]
- A. Abdulle, M.J. Grote and C. Stohrer, Finite element heterogeneous multiscale method for the wave equation: long-time effects. Multiscale Model. Simul. 12 (2014) 1230–1257. [Google Scholar]
- A. Abdulle and M.E. Huber, Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization. Methods Partial Differ. Equ. 32 (2016) 955–969. [CrossRef] [Google Scholar]
- A. Abdulle and A. Nonnenmacher, A short and versatile finite element multiscale code for homogenization problems. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2839–2859. [Google Scholar]
- A. Abdulle and G. Vilmart, Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis. Math. Models Methods Appl. Sci. 22 (2012) 1250002. [Google Scholar]
- A. Abdulle and G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Math. Comp. 83 (2014) 513–536. [CrossRef] [MathSciNet] [Google Scholar]
- A. Abdulle, M.E. Huber and G. Vilmart, Linearized numerical homogenization method for nonlinear monotone parabolic multiscale problems. Multiscale Model. Simul. 13 (2015) 916–952. [Google Scholar]
- J.W. Barrett and W.B. Liu, Finite element approximation of the parabolic p-Laplacian. SIAM J. Numer. Anal. 31 (1994) 413–428. [Google Scholar]
- J.W. Barrett and W.B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68 (1994) 437–456. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam (1978). [Google Scholar]
- S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Vol. 15 of Texts Appl. Math., 3rd edn. Springer, New York (2008). [Google Scholar]
- V. Chiadò Piat, G. Dal Maso and A. Defranceschi, G-convergence of monotone operators. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990) 123–160. [CrossRef] [Google Scholar]
- P.G. Ciarlet, The finite element method for elliptic problems. Vol. 4 of Stud. Math. Appl. North-Holland (1978). [Google Scholar]
- P.G. Ciarlet and P.A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in The mathematical foundations of the finite element method with applications to partial differential equations (1972) 409–474. [Google Scholar]
- G. Dal Maso and A. Defranceschi, Correctors for the homogenization of monotone operators. Differ. Integral Equ. 3 (1990) 1151–1166. [Google Scholar]
- J.E. Dendy Jr., Galerkin’s method for some highly nonlinear problems. SIAM J. Numer. Anal. 14 (1977) 327–347. [Google Scholar]
- L. Diening, C. Ebmeyer and M. Růžička, Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal. 45 (2007) 457–472. [Google Scholar]
- M. Dobrowolski, L∞-convergence of linear finite element approximation to nonlinear parabolic problems. SIAM J. Numer. Anal. 17 (1980) 663–674. [Google Scholar]
- R. Du and P. Ming, Heterogeneous multiscale finite element method with novel numerical integration schemes. Commun. Math. Sci. 8 (2010) 863–885. [Google Scholar]
- W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. [Google Scholar]
- W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Amer. Math. Soc. 18 (2005) 121–156. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Efendiev and A. Pankov, Numerical homogenization and correctors for nonlinear elliptic equations. SIAM J. Appl. Math. 65 (2004) 43–68. [Google Scholar]
- Y. Efendiev and A. Pankov, Numerical homogenization of nonlinear random parabolic operators. Multiscale Model. Simul. 2 (2004) 237–268. [Google Scholar]
- Y. Efendiev, T.Y. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2 (2004) 553–589. [Google Scholar]
- J. Frehse and R. Rannacher, Asymptotic L∞-error estimates for linear finite element approximations of quasilinear boundary value problems. SIAM J. Numer. Anal. 15 (1978) 418–431. [Google Scholar]
- A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul. 5 (2006) 996–1043. [Google Scholar]
- A. Gloria, Reduction of the resonance error. Part 1: Approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21 (2011) 1601–1630. [Google Scholar]
- P. Henning and M. Ohlberger, A Newton-scheme framework for multiscale methods for nonlinear elliptic homogenization problems, in Proc. of the ALGORITMY 2012, 19th Conference on Scientific Computing. Edited by Vysoké Tatry, Podbanské (2012) 65–74. [Google Scholar]
- P. Henning and M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete Contin. Dyn. Syst. Ser. S 8 (2015) 119–150. [CrossRef] [MathSciNet] [Google Scholar]
- V.H. Hoang, Sparse finite element method for periodic multiscale nonlinear monotone problems. Multiscale Model. Simul. 7 (2008) 1042–1072. [Google Scholar]
- V.H. Hoang and C. Schwab, High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3 (2005) 168–194. [Google Scholar]
- P. Houston, J. Robson and E. Süli, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I. The scalar case. IMA J. Numer. Anal. 25 (2005) 726–749. [CrossRef] [MathSciNet] [Google Scholar]
- M.E. Huber, Numerical homogenization methods for advection-diffusion and nonlinear monotone problems with multiple scales. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2015). [Google Scholar]
- V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin, Heidelberg (1994). [Google Scholar]
- O.A. Ladyzhenskaya and N.N. Ural′tseva, Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica. Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London (1968). [Google Scholar]
- P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math. Comp. 76 (2007) 153–177. [CrossRef] [MathSciNet] [Google Scholar]
- I. Niyonzima, R.V. Sabariego, P. Dular and C. Geuzaine, Finite element computational homogenization of nonlinear multiscale materials in magnetostatics. IEEE Trans. Magn. 48 (2012) 587–590. [Google Scholar]
- I. Niyonzima, R.V. Sabariego, P. Dular, F. Henrotte and C. Geuzaine, Computational homogenization for laminated ferromagnetic cores in magnetodynamics. IEEE Trans. Magn. 49 (2013) 2049–2052. [Google Scholar]
- A. Pankov, G-convergence and homogenization of nonlinear partial differential operators. Vol. 422 of Math. Appl. Kluwer Academic Publishers, Dordrecht (1997). [Google Scholar]
- P.A. Raviart, The use of numerical integration in finite element methods for solving parabolic equations, in Topics in numerical analysis. Proc. of the Royal Irish Academy, Conference on Numerical Analysis (1972). Edited by J.J.H. Miller. Academic Press (1973) 233–264. [Google Scholar]
- N. Svanstedt, G-convergence of parabolic operators. Nonlinear Anal. 36 (1999) 807–842. [CrossRef] [MathSciNet] [Google Scholar]
- N. Svanstedt, N. Wellander and J. Wyller, A numerical algorithm for nonlinear parabolic equations with highly oscillating coefficients. Numer. Methods Partial Differ. Equ. 12 (1996) 423–440. [Google Scholar]
- L. Tartar, Cours Peccot. Collège de France (1977). [Google Scholar]
- L. Tartar, The general theory of homogenization. A personalized introduction. Vol. 7 of Lect. Notes Unione Matematica Italiana. Springer-Verlag, Berlin, UMI, Bologna (2009). [Google Scholar]
- V. Thomée, Galerkin finite element methods for parabolic problems. Vol. 25 of Springer Ser. Comput. Math. 2nd edn. Springer-Verlag, Berlin (2006). [Google Scholar]
- M.F. Wheeler, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723–759. [Google Scholar]
- J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33 (1996) 1759–1777. [Google Scholar]
- X. Yue and W. E, The local microscale problem in the multiscale modeling of strongly heterogeneous media: effects of boundary conditions and cell size. J. Comput. Phys. 222 (2007) 556–572. [Google Scholar]
- E. Zeidler, Nonlinear functional analysis and its applications. II/A. Linear monotone operators, Translated from the German by the author and Leo F. Boron. Springer-Verlag, New York (1990). [Google Scholar]
- E. Zeidler, Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron. Springer-Verlag, New York (1990). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.