Free Access
Issue
ESAIM: M2AN
Volume 50, Number 6, November-December 2016
Page(s) 1631 - 1657
DOI https://doi.org/10.1051/m2an/2016001
Published online 07 October 2016
  1. A. Ambroso, C. Chalons and P.-A. Raviart, A Godunov-type method for the seven-equation model of compressible two-phase flow. Comput. Fluids 54 (2012) 67–91. [Google Scholar]
  2. N. Andrianov and G. Warnecke, The Riemann problem for the Baer–Nunziato two-phase flow model. J. Comput. Phys. 195 (2004) 434–464. [Google Scholar]
  3. M.R. Baer and J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. [Google Scholar]
  4. J.B. Bdzil, R. Menikoff, S.F. Son, A.K. Kapila and D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues. Phys. Fluids 11 (1999) 378–402. [CrossRef] [Google Scholar]
  5. R. Berry, L. Zou, H. Zhao, D. Andrs, J. Peterson, H. Zhang and R. Martineau, Relap-7: Demonstrating Seven-Equation, Two-Phase Flow Simulation in a Single-Pipe, Two-Phase Reactor Core and Steam Separator/Dryer, Technical Report INL/EXT-13-28750, Idaho National Laboratory (INL) (2013). [Google Scholar]
  6. A. Chinnayya, E. Daniel and R. Saurel, Modelling detonation waves in heterogeneous energetic materials. J. Comput. Phys. 196 (2004) 490–538. [Google Scholar]
  7. F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two-fluid two-pressure model. C. R. Math. 334 (2002) 927–932. [Google Scholar]
  8. F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer–Nunziato model. ESAIM: M2AN 48 (2014) 165–206. [CrossRef] [EDP Sciences] [Google Scholar]
  9. F. Crouzet, F. Daude, P. Galon, P. Helluy, J.-M. Hérard, O. Hurisse and Y. Liu, Approximate solutions of the Baer-Nunziato Model. ESAIM: Procs. 40 (2013) 63–82. [CrossRef] [EDP Sciences] [Google Scholar]
  10. F. Crouzet, F. Daude, P. Galon, J.-M. Hérard, O. Hurisse and Y. Liu, Validation of a two-fluid model on unsteady liquid-vapor water flows. Comput. Fluids 119 (2015) 131–142. [Google Scholar]
  11. F. Daude, P. Galon, Z. Gao and E. Blaud, Numerical experiments using a HLLC-type scheme with ALE formulation for compressible two-phase flows five-equation models with phase transition. Comput. Fluids 94 (2014) 112–138. [Google Scholar]
  12. V. Deledicque and M.V. Papalexandris, An exact Riemann solver for compressible two-phase flow models containing non-conservative products. J. Comput. Phys. 222 (2007) 217–245. [Google Scholar]
  13. P. Downar-Zapolski, Z. Bilicki, L. Bolle and J. Franco, The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow 22 (1996) 473–483. [CrossRef] [Google Scholar]
  14. D.A. Drew and S.L. Passman, Theory of Multicomponent Fluids. Springer Verlag (1999). [Google Scholar]
  15. Europlexus, User’s Manual. Technical Report, Joint Reasearch Center (JRC), Commissariat là’énergie atomique et aux énergies alternatives (CEA). Available at http://europlexus.jrc.ec.europa.eu/public/manual˙html/index.html (2015). [Google Scholar]
  16. T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. [Google Scholar]
  17. T. Gallouët, P. Helluy, J.-M. Hérard and J. Nussbaum, Hyperbolic relaxation models for granular flows. ESAIM: M2AN 44 (2010) 371–400. [CrossRef] [EDP Sciences] [Google Scholar]
  18. S. Gavrilyuk, The structure of pressure relaxation terms: one-velocity case. Internal report H-I83-2014-00276-EN, EDF R&D (2014). [Google Scholar]
  19. S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. [Google Scholar]
  20. J. Glimm, D. Saltz and D.H. Sharp, Renormalization group solution of two-phase flow equations for Rayleigh-Taylor mixing. Phys. Lett. A 222 (1996) 171–176. [Google Scholar]
  21. V. Guillemaud, Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions. Ph.D. thesis, Université de Provence - Aix-Marseille I. Available at https://tel.archives-ouvertes.fr/tel-00169178/document (2007). [Google Scholar]
  22. J.-M. Hérard, A three-phase flow model. Math. Comput. Model. 45 (2007) 732–755. [Google Scholar]
  23. J.-M. Hérard, Une classe de modèles diphasiques bifluides avec changement de régime. Internal report H-I81-2010-00486-FR, EDF (2010). [Google Scholar]
  24. J.-M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas-liquid flows. Comput. Fluids 55 (2012) 57–69. [Google Scholar]
  25. J.-M. Hérard and Y. Liu, Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles. Internal report H-I81-2013-01162-FR, EDF (2013). [Google Scholar]
  26. M. Ishii, Thermo-fluid dynamic theory of two-phase flows. Collection de la Direction des Etudes et Recherches d’Electricité de France. Eyrolles, Paris (1975). [Google Scholar]
  27. H. Jin, J. Glimm and D.H. Sharp, Entropy of averaging for compressible two-pressure two-phase flow models. Phys. Lett. A 360 (2006) 114–121. [Google Scholar]
  28. A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two-phase modeling of DDT: Structure of the velocity-relaxation zone. Phys. Fluids 9 (1997) 3885–3897. [Google Scholar]
  29. J. Laviéville, M. Boucker, E. Quemerais, S. Mimouni and N. Méchitoua, NEPTUNECFD V1.0 - Theory Manual. Internal report H-I81-2006-04377-EN. EDF R&D (2006). [Google Scholar]
  30. O. Le Métayer, J. Massoni and R. Saurel, Élaboration des lois d’état d’un liquide et de sa vapeur pour les modèles d’écoulements diphasiques. Int. J. Thermal Sci. 43 (2004) 265–276. [CrossRef] [Google Scholar]
  31. O. Le Métayer, J. Massoni and R. Saurel, Dynamic relaxation processes in compressible multiphase flows. Application to evaporation phenomena. ESAIM: Procs. 40 (2013) 103–123. [CrossRef] [EDP Sciences] [Google Scholar]
  32. H. Lochon, Modélisation d’écoulements diphasiques: fermetures entropiques de modèles bifluides. Internal report H-T63-2014-10406-FR. EDF (2014). [Google Scholar]
  33. S. Müller, M. Hantke, and P. Richter. Closure conditions for non-equilibrium multi-component models. Contin. Mech. Thermodyn. 28 (2016) 1157–1189. [CrossRef] [MathSciNet] [Google Scholar]
  34. M. Pelanti and K.-M. Shyue, A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259 (2014) 331–357. [Google Scholar]
  35. V.H. Ransom and D.L. Hicks, Hyperbolic two-pressure models for two-phase flow. J. Comput. Phys. 53 (1984) 124–151. [Google Scholar]
  36. RELAP5-3d, Code Manual Volume IV: Models and Correlations. Technical Report INEEL-EXT-98-00834, Idaho National Laboratory (INL) (2012). [Google Scholar]
  37. B. Riegel, Contribution àl’étude de la décompression d’une capacité en regime diphasique. Ph.D. thesis, Université Scientifique et Médicale et Institut National Polytechnique de Grenoble (1978). [Google Scholar]
  38. R. Saurel and R. Abgrall, A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows. J. Comput. Phys. 150 (1999) 425–467. [Google Scholar]
  39. D.W. Schwendeman, C.W. Wahle and A.K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. [Google Scholar]
  40. A.R. Simpson, Large water hammer pressures due to column separation in sloping pipes. Ph.D. thesis, University of Michigan (1986). [Google Scholar]
  41. S. Tokareva and E. Toro, HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573–3604. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you