Free Access
Volume 50, Number 6, November-December 2016
Page(s) 1731 - 1761
Published online 18 October 2016
  1. B. Ainseba, Exact and approximate controllability of the age and space population dynamics structured model. J. Math. Anal. Appl. 275 (2002) 562–574. [CrossRef] [Google Scholar]
  2. B. Ainseba and M. Iannelli, Exact controllability of a nonlinear population-dynamics problem. Differ. Integral Equ. 16 (2003) 1369–1384. [Google Scholar]
  3. B. Ainseba and M. Langlais, On a population dynamics control problem with age dependence and spatial structure. J. Math. Anal. Appl. 248 (2000) 455–474. [CrossRef] [Google Scholar]
  4. D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Acad. Sci. Paris Sér. I Math. 340 (2005) 873–878. [Google Scholar]
  5. D. Auroux and M. Nodet, The back and forth nudging algorithm for data assimilation problems: theoretical results on transport equations. ESAIM: COCV 18 (2012) 318–342. [CrossRef] [EDP Sciences] [Google Scholar]
  6. D. Auroux, P. Bansart and J. Blum, An evolution of the back and forth nudging for geophysical data assimilation: application to Burgers equation and comparisons. Inverse Probl. Sci. Eng. 21 (2013) 399–419. [CrossRef] [Google Scholar]
  7. B.P. Ayati, A variable time step method for an age-dependent population model with nonlinear diffusion. SIAM J. Numer. Anal. 37 (2000) 1571–1589. [CrossRef] [MathSciNet] [Google Scholar]
  8. B.P. Ayati and T.F. Dupont, Galerkin methods in age and space for a population model with nonlinear diffusion. SIAM J. Numer. Anal. 40 (2002) 1064–1076. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system. SIAM J. Control Optim. 49 (2011) 420–463. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems. ESAIM: COCV 20 (2014) 924–956. [CrossRef] [EDP Sciences] [Google Scholar]
  11. J.S. Baras, A. Bensoussan and M.R. James, Dynamic observers as asymptotic limits of recursive filters: special cases. SIAM J. Appl. Math. 48 (1988) 1147–1158. [CrossRef] [MathSciNet] [Google Scholar]
  12. V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443–1494. [CrossRef] [MathSciNet] [Google Scholar]
  13. W.L. Chan and B.Z. Guo, On the semigroups of age-size dependent population dynamics with spatial diffusion. Manuscr. Math. 66 (1989) 161–181. [CrossRef] [Google Scholar]
  14. D. Chapelle, N. Cîndea and P. Moireau, Improving convergence in numerical analysis using observers—the wave-like equation case. Math. Models Methods Appl. Sci. 22 (2012) 1250040. [CrossRef] [MathSciNet] [Google Scholar]
  15. M.J. Chapman and A.J. Pritchard, Finite-dimensional compensators for nonlinear infinite-dimensional systems, in Control theory for distributed parameter systems and applications (Vorau, 1982). Vol. 54 of Lect. Notes Control Inform. Sci. Springer, Berlin (1983) 60–76. [Google Scholar]
  16. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory. Vol. 93 of Appl. Math. Sci., 2nd edition. Springer-Verlag, Berlin, (1998). [Google Scholar]
  17. J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations. SIAM J. Control Optim. 43 (2004) 549–569. [CrossRef] [MathSciNet] [Google Scholar]
  18. R.F. Curtain and H. Zwart, An introduction to infinite-dimensional linear systems theory. Vol. 21 of Texts Appl. Math. Springer-Verlag, New York (1995). [Google Scholar]
  19. R. Curtain, M. Demetriou and K. Ito, Adaptive observers for structurally perturbed infinite dimensional systems, in Proc. of the 36th IEEE Conference on Decision and Control, 1997, Vol. 1 (1997) 509–514. [Google Scholar]
  20. C. Cusulin and L. Gerardo-Giorda, A numerical method for spatial diffusion in age-structured populations. Numer. Methods Partial Differ. Equ. 26 (2010) 253–273. [Google Scholar]
  21. G. Di Blasio and A. Lorenzi, Direct and inverse problems in age-structured population diffusion. Discrete Contin. Dyn. Syst. Ser. S 4 (2011) 539–563. [MathSciNet] [Google Scholar]
  22. G. Di Blasio and A. Lorenzi, An identification problem in age-dependent population diffusion. Numer. Funct. Anal. Optim. 34 (2013) 36–73. [CrossRef] [MathSciNet] [Google Scholar]
  23. H.W. Engl, W. Rundell and O. Scherzer, A regularization scheme for an inverse problem in age-structured populations. J. Math. Anal. Appl. 182 (1994) 658–679. [CrossRef] [MathSciNet] [Google Scholar]
  24. E. Fridman, Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method. Automatica 49 (2013) 2250–2260. [CrossRef] [MathSciNet] [Google Scholar]
  25. L. Gerardo-Giorda, Numerical approximation of density dependent diffusion in age-structured population dynamics, in Conference Applications of Mathematics 2013 in honor of the 70th birthday of Karel Segeth, edited by J. Brandts, S. Korotov, M. Kryzek, J. Sistek and T. Vejchodsky. Vol. 2013. Institute of Mathematics AS CR, Prague (2013) 88–97. [Google Scholar]
  26. B.Z. Guo and W.L. Chan, On the semigroup for age dependent population dynamics with spatial diffusion. J. Math. Anal. Appl. 184 (1994) 190–199. [CrossRef] [MathSciNet] [Google Scholar]
  27. M.E. Gurtin, A system of equations for age-dependent population diffusion. J. Theoret. Biol. 40 (1973). [Google Scholar]
  28. M.E. Gurtin and R.C. MacCamy, Diffusion models for age-structured populations. Math. Biosci. 54 (1981) 49–59. [CrossRef] [MathSciNet] [Google Scholar]
  29. M. Gyllenberg, A. Osipov and L. Päivärinta, The inverse problem of linear age-structured population dynamics. J. Evol. Equ. 2 (2002) 223–239. [CrossRef] [MathSciNet] [Google Scholar]
  30. G. Haine, Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator. Math. Control. Signals Syst. 26 (2014) 435–462. [Google Scholar]
  31. G. Haine and K. Ramdani, Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations. Numer. Math. 120 (2012) 307–343. [CrossRef] [MathSciNet] [Google Scholar]
  32. Z. Hidayat, R. Babuska, B. De Schutter and A. Nunez, Observers for linear distributed-parameter systems: A survey, in IEEE International Symposium on, Robotic and Sensors Environments (ROSE) (2011) 166–171. [Google Scholar]
  33. W. Huyer, Semigroup formulation and approximation of a linear age-dependent population problem with spatial diffusion. Semigroup Forum 49 (1994) 99–114. [CrossRef] [MathSciNet] [Google Scholar]
  34. W. Huyer, Approximation of a linear age-dependent population model with spatial diffusion. Commun. Appl. Anal. 8 (2004) 87–108. [MathSciNet] [Google Scholar]
  35. M.R. James and J.S. Baras, An observer design for nonlinear control systems, in Analysis and optimization of systems (Antibes, 1988). Vol. 111 of Lect. Notes Control Inform. Sci. Springer, Berlin (1988) 170–180. [Google Scholar]
  36. T. Kato, Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin (1995). [Google Scholar]
  37. O. Kavian and O. Traoré, Approximate controllability by birth control for a nonlinear population dynamics model. ESAIM: COCV 17 (2011) 1198–1213. [CrossRef] [EDP Sciences] [Google Scholar]
  38. M.-Y. Kim, Galerkin methods for a model of population dynamics with nonlinear diffusion. Numer. Methods Partial Differ. Equ. 12 (1996) 59–73. [CrossRef] [Google Scholar]
  39. M.-Y. Kim and E.-J. Park, Mixed approximation of a population diffusion equation. Comput. Math. Appl. 30 (1995) 23–33. [CrossRef] [MathSciNet] [Google Scholar]
  40. M. Krstic, L. Magnis and R. Vazquez, Nonlinear control of the viscous Burgers equation: Trajectory generation, tracking and observer design. J. Dyn. Syst. Meas. Control 131 (2009) 021012. [CrossRef] [Google Scholar]
  41. M. Langlais, A nonlinear problem in age-dependent population diffusion. SIAM J. Math. Anal. 16 (1985) 510–529. [CrossRef] [MathSciNet] [Google Scholar]
  42. M. Langlais, Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion J. Math. Biol. 26 (1988) 319–346. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  43. L. Lopez and D. Trigiante, A finite difference scheme for a stiff problem arising in the numerical solution of a population dynamic model with spatial diffusion. Nonlin. Anal. 9 (1985) 1–12. [CrossRef] [Google Scholar]
  44. D. Luenberger, Observing the state of a linear system, IEEE Trans. Mil. Electron. MIL-8 (1964) 74–80. [Google Scholar]
  45. F.A. Milner, A numerical method for a model of population dynamics with spatial diffusion. Comput. Math. Appl. 19 (1990) 31–43. [CrossRef] [MathSciNet] [Google Scholar]
  46. P. Moireau, D. Chapelle and P. Le Tallec, Joint state and parameter estimation for distributed mechanical systems. Comput. Methods Appl. Mech. Eng. 197 (2008) 659–677. [Google Scholar]
  47. P. Moireau, D. Chapelle and P. Le Tallec, Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging Inverse Probl. 25 (2009) 035010. [CrossRef] [Google Scholar]
  48. G.G. Pelovska, Numerical investigations in the field of age-structured population dynamics. Ph.D. thesis, University of Trento (2007). [Google Scholar]
  49. A. Perasso, Identifiabilité de paramètres pour des systèmes décrits par des équations aux dérivées partielles. Application à la dynamique des populations. Ph.D. thesis, Université Paris Sud XI (2009). [Google Scholar]
  50. K.D. Phung and G. Wang, An observability estimate for parabolic equations from a measurable set in time and its applications. J. Eur. Math. Soc. 15 (2013) 681–703. [CrossRef] [MathSciNet] [Google Scholar]
  51. M. Pilant and W. Rundell, Determining a coefficient in a first-order hyperbolic equation. SIAM J. Appl. Math. 51 (1991) 494–506. [CrossRef] [MathSciNet] [Google Scholar]
  52. J.-P. Puel, Une approche non classique d’un problème d’assimilation de données. C. R. Math. Acad. Sci. Paris 335 (2002) 161–166. [CrossRef] [MathSciNet] [Google Scholar]
  53. J.-P. Puel, A nonstandard approach to a data assimilation problem and Tychonov regularization revisited. SIAM J. Control Optim. 48 (2009) 1089–1111. [CrossRef] [MathSciNet] [Google Scholar]
  54. K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers. Automatica 46 (2010) 1616–1625. [CrossRef] [MathSciNet] [Google Scholar]
  55. J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete Contin. Dyn. Syst. 27 (2010) 1159–1187. [CrossRef] [MathSciNet] [Google Scholar]
  56. A. Rhandi, Positivity and stability for a population equation with diffusion on L1. Positivity 2 (1998) 101–113. [CrossRef] [MathSciNet] [Google Scholar]
  57. W. Rundell, Determining the death rate for an age-structured population from census data. SIAM J. Appl. Math. 53 (1993) 1731–1746. [CrossRef] [MathSciNet] [Google Scholar]
  58. A. Smyshlyaev and M. Krstic, Backstepping observers for a class of parabolic PDEs. Syst. Control Lett. 54 (2005) 613–625. [CrossRef] [Google Scholar]
  59. J. Song, J.Y. Yu, X.Z. Wang, S.J. Hu, Z.X. Zhao, J.Q. Liu, D.X. Feng and G.T. Zhu, Spectral properties of population operator and asymptotic behaviour of population semigroup. Acta Math. Sci. 2 (1982) 139–148. [CrossRef] [Google Scholar]
  60. O. Traore, Null controllability of a nonlinear population dynamics problem. Int. J. Math. Math. Sci. 20 (2006) 49279. [Google Scholar]
  61. O. Traore, Approximate controllability and application to data assimilation problem for a linear population dynamics model. Int. J. Appl. Math. 37 (2007) 1, 12. [Google Scholar]
  62. O. Traore, Null controllability and application to data assimilation problem for a linear model of population dynamics. Ann. Math. Blaise Pascal 17 (2010) 375–399. [CrossRef] [MathSciNet] [Google Scholar]
  63. R. Triggiani, On the stabilizability problem in Banach space. J. Math. Anal. Appl. 52 (1975) 383–403. [CrossRef] [MathSciNet] [Google Scholar]
  64. R. Triggiani, Addendum. J. Math. Anal. Appl. 56 (1976) 492-493. [CrossRef] [MathSciNet] [Google Scholar]
  65. R. Triggiani, Boundary feedback stabilizability of parabolic equations. Appl. Math. Optim. 6 (1980) 201–220. [CrossRef] [MathSciNet] [Google Scholar]
  66. C. Walker, Some remarks on the asymptotic behavior of the semigroup associated with age-structured diffusive populations. Monatsh. Math. 170 (2013) 481–501. [CrossRef] [MathSciNet] [Google Scholar]
  67. G.F. Webb, Theory of nonlinear age-dependent population dynamics. Vol. 89 of Monogr. Textb. Pure Appl. Math. Marcel Dekker, Inc., New York (1985). [Google Scholar]
  68. G.F. Webb, Population models structured by age, size and spatial position, in Structured population models in biology and epidemiology. Vol. 1936 of Lect. Notes Math. Springer, Berlin (2008) 1–49. [Google Scholar]
  69. J. Zabczyk, Remarks on the algebraic Riccati equation in Hilbert space. Appl. Math. Optim. 2 (1975/76) 251–258. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you