Free Access
Volume 50, Number 6, November-December 2016
Page(s) 1763 - 1787
Published online 18 October 2016
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press, New York (2003). [Google Scholar]
  2. A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput. 68 (1999) 607–631. [Google Scholar]
  3. P.R. Amestoy, I.S. Duff, J. Koster and J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001) 15–41. [Google Scholar]
  4. P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet, Hybrid scheduling for the parallel solution of linear systems. Parallel Computing 32 (2006) 136–156. [Google Scholar]
  5. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749–1779. [Google Scholar]
  6. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence Rates for Greedy Algorithms in Reduced Basis Methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Buffa, M. Costabel and D. Sheen, On traces for H(curl) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering. In Topics in Computational Wave Propagation. Vol. 31 of Lect. Notes Comput. Sci. Eng. Springer Berlin Heidelberg (2003) 83–124. [Google Scholar]
  10. Y. Chen, J.S. Hesthaven, Y. Maday and J. Rodríguez, Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell’s problem. ESAIM: M2AN 43 (2009) 1099–1116. [CrossRef] [EDP Sciences] [Google Scholar]
  11. Y. Chen, J.S. Hesthaven, Y. Maday and J. Rodríguez, Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32 (2010) 970–996. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9 (1975) 77–84. [Google Scholar]
  13. J.L. Eftang, A.T. Patera and E.M. Rønquist, An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32 (2010) 3170–3200. [CrossRef] [MathSciNet] [Google Scholar]
  14. J.L. Eftang, D.J. Knezevic and A.T. Patera, An “hp” certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dyn. Syst. 17 (2011) 395–422. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Fares, J.S. Hesthaven, Y. Maday and B. Stamm, The reduced basis method for the electric field integral equation. J. Comp. Phys. 230 (2011) 5532–5555. [CrossRef] [Google Scholar]
  16. M. Ganesh, J.S. Hesthaven and B. Stamm, A reduced basis method for electromagnetic scattering by multiple particles in three dimensions. J. Comp. Phys. 231 (2012) 7756–7779. [CrossRef] [Google Scholar]
  17. G.N. Gatica and S. Meddahi, Finite element analysis of a time harmonic Maxwell problem with an impedance boundary condition. IMA J. Numer. Anal. 32 (2012) 534–552. [CrossRef] [MathSciNet] [Google Scholar]
  18. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer (1986). [Google Scholar]
  19. M.W. Hess and P. Benner, Fast Evaluation of Time-Harmonic Maxwell’s Equations Using the Reduced Basis Method. IEEE Trans. Microw. Theory Tech. 61 (2013) 2265–2274. [CrossRef] [Google Scholar]
  20. J.S. Hesthaven, B. Stamm and S. Zhang, Certified reduced basis method for the electric field integral equation. SIAM J. Sci. Comput. 34 (2012) A1777–A1799. [CrossRef] [Google Scholar]
  21. R. Hiptmair, A. Moiola and I. Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. 82 (2013) 247–268. [CrossRef] [Google Scholar]
  22. P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485–518. [CrossRef] [MathSciNet] [Google Scholar]
  23. D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. Acad. Sci. Paris Series I 345 (2007) 473–478. [Google Scholar]
  24. S. Kaulmann, M. Ohlberger and B. Haasdonk, A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems. C. R. Math. Acad. Sci. Paris 349 (2011) 1233–1238. [CrossRef] [MathSciNet] [Google Scholar]
  25. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
  26. P. Monk, Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003). [Google Scholar]
  27. F. Negri, G. Rozza, A. Manzoni and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35 (2013) A2316 – A2340. [Google Scholar]
  28. I. Perugia and D. Schötzau, The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72 (2003) 1179–1214. [CrossRef] [Google Scholar]
  29. J. Pomplun and F. Schmidt, Accelerated a posteriori error estimation for the reduced basis method with application to 3D electromagnetic scattering problems. SIAM J. Sci. Comput. 32 (2010) 498–520. [CrossRef] [MathSciNet] [Google Scholar]
  30. G. Rozza, D.B. Phuong Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics. Arch. Comput. Methods. Eng. 15 (2008) 229–275. [Google Scholar]
  31. D. Sármány, F. Izsák and J.J.W. van der Vegt, Optimal penalty parameters for symmetric discontinuous Galerkin discretisations of the time-harmonic Maxwell equations. J. Sci. Comput. 44 (2010) 219–254. [CrossRef] [MathSciNet] [Google Scholar]
  32. T. Warburton and J.S. Hesthaven, On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Engrg. 192 (2003) 2765–2773. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you