Free Access
Issue
ESAIM: M2AN
Volume 50, Number 6, November-December 2016
Page(s) 1817 - 1823
DOI https://doi.org/10.1051/m2an/2016008
Published online 18 October 2016
  1. H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations. Vol. 343 of Grundl. Math. Wiss. [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2011). [Google Scholar]
  2. R. Bennacer, A. Tobbal and H. Beji, Convection naturelle Thermosolutale dans une Cavité Poreuse Anisotrope: Formulation de Darcy-Brinkman.Rev. Energ. Ren. 5 (2002) 1–21. [Google Scholar]
  3. X. Cai and Q. Jiu, Weak and strong solutions for the incompressible Navier−Stokes equations with damping. J. Math. Ana. Appl. 343 (2008) 799–809. [CrossRef] [Google Scholar]
  4. J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity. ESAIM: M2AN 34 (2000) 315–335. [CrossRef] [EDP Sciences] [Google Scholar]
  5. J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier−Stokes Equations. Vol. 32 Oxford Lect. Ser. Math. Appl. (2006). [Google Scholar]
  6. E. Grenier and N. Masmoudi, Ekman layers of rotating fluid, the case of well prepared initial data. Commun. Partial Differ. Eq. 22 (1997) 953–975. [CrossRef] [Google Scholar]
  7. V. Kalantarov and S. Zelik, Smooth attractors for the Brinkman−Forchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal. 11 (2012) 2037–2054. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. Iftimie, A uniqueness result for the Navier−Stokes equations with vanishing vertical viscosity. SIAM J. Math. Anal. 33 1483–1493. [Google Scholar]
  9. O.A. Ladyžhenskaya, The Mathematical Theory Of Viscous Incompressible Flow. Second English edition, revised and enlarged. Vol. 2 of Mathematics and its Applications. Gordon and Breach Science Publishers, New York (1969). [Google Scholar]
  10. P.A. Markowich, E.S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman−Forchheimer-extended Darcy model. Nonlinearity 29 (2016) 1292. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Paicu, Équation anisotrope de Navier−Stokes dans des espaces critiques. Rev. Mat. Iberoamer. 21 (2005) 179–235. [CrossRef] [Google Scholar]
  12. J. Pedlosky, Geophysical Fluids Dynamics. Springer Verlag, New York (1987). [Google Scholar]
  13. R. Temam, Infinite Dimensional Dynamical Systems In Mechanics and Physics. Springer-Verlag, New York (1997). [Google Scholar]
  14. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you