Free Access
Issue
ESAIM: M2AN
Volume 51, Number 5, September-October 2017
Page(s) 1691 - 1731
DOI https://doi.org/10.1051/m2an/2016073
Published online 20 October 2017
  1. H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194 (2009) 463–506. [Google Scholar]
  2. H. Abels and E. Feireisl, On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57 (2008) 659–698. [CrossRef] [Google Scholar]
  3. H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22 (2012) 1150013, 40. [Google Scholar]
  4. B. Andreianov, M. Bendahmane, F. Hubert and S. Krell, On 3D DDFV discretization of gradient and divergence operators. I. meshing, operators and discrete duality. IMA J. Numer. Anal. 32 (2012) 1574–1603. [CrossRef] [Google Scholar]
  5. B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23 (2007) 145–195. [Google Scholar]
  6. M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet. On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35 (2015) 1125–1149. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Boyer, A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31 (2002) 41–68. [Google Scholar]
  8. F. Boyer, F. Hubert and S. Krell, Nonoverlapping Schwarz algorithm for solving two-dimensional m-DDFV schemes. IMA J. Numer. Anal. 30 (2010) 1062–1100. [CrossRef] [Google Scholar]
  9. F. Boyer, S. Krell and F. Nabet, Inf-sup stability of the discrete duality finite volume method for the 2D stokes problem. Math. Comput. 84 (2015) 2705–2742. [Google Scholar]
  10. F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar and M. Quintard, Cahn−Hilliard/Navier−Stokes model for the simulation of three-phase flows. Trans. Porous Media 82 (2010) 463–483. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Boyer and S. Minjeaud, Numerical schemes for a three component CahnHilliard model. ESAIM: M2AN 45 (2011) 697–738. [CrossRef] [EDP Sciences] [Google Scholar]
  12. A. Carlson, M. Do Quang and G. Amberg, Dissipation in rapid dynamic wetting. J. Fluid Mech. 682 (2011) 213–240. [Google Scholar]
  13. L. Cherfils, M. Petcu and M. Pierre, A numerical analysis of the CahnHilliard equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 27 (2010) 1511–1533. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Chill, E. Fašangováand J. Prüss, Convergence to steady state of solutions of the CahnHilliard and Caginalp equations with dynamic boundary conditions. Math. Nachr. 279 (2006) 1448–1462. [CrossRef] [Google Scholar]
  15. K. Domelevo and P. Omnes. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. M2AN: M2AN 39 (2005) 1203–1249. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. S. Dong, On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows. Comput. Methods Appl. Mech. Engrg. 247/248 (2012) 179–200. [CrossRef] [Google Scholar]
  17. S. Dong, An outflow boundary condition and algorithm for incompressible two-phase flows with phase field approach. J. Comput. Phys. 266 (2014) 47–73. [Google Scholar]
  18. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In Handbook of numerical analysis, Vol. VII. Edited by Ph. Ciarlet and J.L. Lions. North-Holland, Amsterdam (2000) 715–1022. [Google Scholar]
  19. R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klofkorn and G. Manzini, 3d benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Proc. of Finite Volumes for Complex Applications, Vol. VI. Springer (2011) 895–930. [Google Scholar]
  20. H.P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79 (1997) 893–896. [Google Scholar]
  21. H.P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin films. EPL Europhys. Lett. 42 (1998) 49–54. [CrossRef] [EDP Sciences] [Google Scholar]
  22. T. Goudon and S. Krell, A DDFV Scheme for Incompressible NavierStokes equations with variable density. In Proc. of Finite Volumes for Complex Applications VII, edited by J. Fuhrmann, M. Ohlberger and C. Rohde. In Vol. 77 and 78. Springer Proceedings in Mathematics and Statistics. Springer, Berlin, Allemagne (2014). [Google Scholar]
  23. R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Proc. of Finite Volumes for Complex Applications V, Aussois, France. Edited by R. Eymard and J.M. Herard. Hermès (2008). [Google Scholar]
  24. S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan and L. Tobiska, Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60 (2009) 1259–1288. [Google Scholar]
  25. D. Jacqmin, Calculation of two-phase NavierStokes flows using phase-field modeling. J. Comput. Phys. 155 (1999) 96–127. [Google Scholar]
  26. D. Jacqmin, Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402 (2000) 57–88. [Google Scholar]
  27. D. Kay, V. Styles and R. Welford, Finite element approximation of a Cahn–Hilliard–NavierStokes system. Interfaces Free Bound. 10 (2008) 15–43. [CrossRef] [MathSciNet] [Google Scholar]
  28. R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions. Comput. Phys. Commun. 133 (2001) 139–157. [Google Scholar]
  29. S. Krell, Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes. Numer. Methods Partial Differ. Equ. 27 (2011) 1666–1706. [Google Scholar]
  30. S. Krell and G. Manzini, The discrete duality finite volume method for stokes equations on three-dimensional polyhedral meshes. SIAM J. Numer. Anal. 50 (2012) 808–837. [Google Scholar]
  31. C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179 (2003) 211–228. [Google Scholar]
  32. S. Metzger, On numerical schemes for phase-field models for electrowetting with electrolyte solutions. Proc. Appl. Math. Mech. 15 (2015) 715–718. [Google Scholar]
  33. S. Minjeaud, An adaptive pressure correction method without spurious velocities for diffuse-interface models of incompressible flows. J. Comput. Phys. 236 (2013) 143–156. [Google Scholar]
  34. S. Minjeaud, An unconditionally stable uncoupled scheme for a triphasic CahnHilliard/NavierStokes model. Numer. Methods Partial Differ. Equ. 29 (2013) 584–618. [Google Scholar]
  35. A. Miranville and S. Zelik, Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions. Math. Methods Appl. Sci. 28 (2005) 709–735. [Google Scholar]
  36. F. Nabet, Schémas volumes finis pour des problèmes multiphasiques. Ph.D. thesis, Aix-Marseille université (2014). [Google Scholar]
  37. F. Nabet, Convergence of a finite-volume scheme for the cahn–hilliard equation with dynamic boundary conditions. IMA J. Numer. Anal. 36 (2015) 1898–1942. [CrossRef] [Google Scholar]
  38. F. Nabet, An error estimate for a finite-volume scheme for the CahnHilliard equation with dynamic boundary conditions (2016). Preprint hal-01273945 (2016). [Google Scholar]
  39. J. Prüss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the CahnHilliard equation with dynamic boundary conditions. Ann. Mat. Pura Appl. 185 (2006) 627–648. [CrossRef] [Google Scholar]
  40. T. Qian, X.-P. Wang and P. Sheng, A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564 (2006) 333. [Google Scholar]
  41. R. Racke and S. Zheng, The CahnHilliard equation with dynamic boundary conditions. Adv. Differ. Equ. 8 (2003) 83–110. [Google Scholar]
  42. A.J. Salgado, A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines. ESAIM: M2AN 47 (2013) 743–769, 5. [CrossRef] [EDP Sciences] [Google Scholar]
  43. J. Shen, X. Yang and H. Yu, Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284 (2015) 617–630. [Google Scholar]
  44. X-.P. Wang, T. Qian and P. Sheng, Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605 (2008) 59–78. [Google Scholar]
  45. H. Wu and S. Zheng, Convergence to equilibrium for the CahnHilliard equation with dynamic boundary conditions. J. Differ. Equ. 204 (2004) 511–531. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you