Free Access
Volume 52, Number 3, May–June 2018
Page(s) 869 - 891
Published online 13 September 2018
  1. A. Abdulle and Y. Bai, Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems. J. Comput. Phys. 231 (2012) 7014–7036. [Google Scholar]
  2. A. Abdulle, E. Weinan, B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21 (2012). [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4 (2005) 790–812. [Google Scholar]
  4. A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to Numerical Stochastic Homogenization 311 and the Related Computational Challenges: Some Recent Developments, Vol. 22. World Scientific, Singapore (2011). [Google Scholar]
  5. G. Bal, J. Wenjia and W. Jing, Corrector theory for MsFEM and HMM in random media. Multiscale Model. Simul. 9 (2011) 1549–1587. [Google Scholar]
  6. X. Blanc, C. Le Bris and P.-L. Lions, Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques. C. R. Math. 343 (2006) 717–724. [Google Scholar]
  7. X. Blanc, R. Costaouec, C. Le Bris and F. Legoll, Variance reduction in stochastic homogenization using antithetic variables. Markov Processes Relat. Fields 66 (2012) 31–66. [Google Scholar]
  8. S. Boyaval, Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul. 7 (2008). [PubMed] [Google Scholar]
  9. M. Chevreuil, A. Nouy and E. Safatly, A multiscale method with patch for the solution of stochastic partial differential equationswith localized uncertainties. Comput. Methods Appl. Mech. Eng. 255 (2013) 255–274. [Google Scholar]
  10. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Vol. 69. Springer Science & Business Media (2011). [Google Scholar]
  11. W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2 (2007) 367–450. [Google Scholar]
  12. Y. Efendiev and T.Y. Hou, Multiscale Finite Element Methods. Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York, NY (2009). [Google Scholar]
  13. Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J. Comput. Appl. Math. 206 (2007) 843–872. [Google Scholar]
  14. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004). [CrossRef] [Google Scholar]
  15. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society (1998). [Google Scholar]
  16. A. Falcó and A. Nouy, Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numer. Math. 121 (2012) 503–530. [Google Scholar]
  17. L. Gendre, O. Allix and P. Gosselet, A two-scale approximation of the Schur complement and its use for non-intrusive coupling. Int. J. Numer. Methods Eng. 87 (2011) 889–905. [Google Scholar]
  18. R. Glowinski, J. He, J. Rappaz and J. Wagner, Approximation of multi-scale elliptic problems using patches of finite elements. C. R. Math. 337 (2003) 679–684. [Google Scholar]
  19. L. Grasedyck, D. Kressner and C. Tobler, A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36 (2013) 53–78. [CrossRef] [MathSciNet] [Google Scholar]
  20. W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus. Vol. 42 of Springer Series in Computational Mathematics. Springer, Heidelberg (2012). [Google Scholar]
  21. V. Ha Hoang and C. Schwab, High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3 (2005). [Google Scholar]
  22. T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [Google Scholar]
  23. B.N. Khoromskij, Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom. Intell. Lab. Syst. 110 (2012) 1–19. [CrossRef] [Google Scholar]
  24. C. Le Bris, Some numerical approaches for weakly random homogenization, in Numerical Mathematics and Advanced Applications, edited by G. Kreiss, P. Lötstedt, A. Målqvist and M. Neytcheva. Springer, Berlin, Heidelberg (2009) 29–45. [Google Scholar]
  25. C. Le Bris, F. Legoll and W. Minvielle, Special quasirandom structures: a selection approach for stochastic homogenization. Monte Carlo Methods Appl. 22 (2016) 25–54. [Google Scholar]
  26. C. Le Bris, F. Legoll and F. Thomines, Multiscale finite element approach for “weakly” random problems and related issues. ESAIM: M2AN 48 (2014) 815–858. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  27. C. Le Bris and F. Thomines, A reduced basis approach for some weakly stochastic multiscale problems. Chin. Ann. Math. Ser. B 33 (2012) 657–672. [CrossRef] [Google Scholar]
  28. F. Legoll and W. Minvielle, A control variate approach based on a defect-type theory for variance reduction in stochastic homogenization. Multiscale Model. Simul. 13 (2015). [PubMed] [Google Scholar]
  29. F. Legoll and W. Minvielle, Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem. Discrete Contin. Dyn. Syst. Ser. S 8 (2015) 1–27. [Google Scholar]
  30. L. Lin and B. Stamm, A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions. Part I: Second order linear PDE. ESAIM: M2AN 50 (2016) 1193–1222. [CrossRef] [EDP Sciences] [Google Scholar]
  31. Y. Maday, Reduced basis method for the rapid and reliable solution of partial differential equations, in International Congress of Mathematicians, Madrid. European Mathematical Society (2006). 1255–1270. [Google Scholar]
  32. Y. Maday, N.C. Nguyen, A.T. Patera and G.S.H. Pau, A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8 (2009) 383–404. [CrossRef] [MathSciNet] [Google Scholar]
  33. A. Nouy, Low-rank methods for high-dimensional approximation and model order reduction, in Chapter 4 of Model Reduction and Approximation. SIAM (2017) 171–226. [CrossRef] [Google Scholar]
  34. O. Pironneau and J.-L. Lions, Domain decomposition methods for CAD. C. R. Acad. Sci. Ser. I – Math. 328 (1999) 73–80. [Google Scholar]
  35. V. Rezzonico, A. Lozinski, M. Picasso, J. Rappaz and J. Wagner, Multiscale algorithm with patches of finite elements. Math. Comput. Simul. 76 (2007) 181–187. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you