Free Access
Issue
ESAIM: M2AN
Volume 52, Number 5, September–October 2018
Page(s) 1763 - 1802
DOI https://doi.org/10.1051/m2an/2018025
Published online 22 November 2018
  1. O. Allix, L. Gendre, P. Gosselet and G. Guguin, Non-intrusive coupling: an attempt to merge industrial and research software capabilities, in Chapter 15 of Recent Developments and Innovative Applications in Computational Mechanics, edited by D. Mueller-Hoeppe, S. Loehnert and S. Reese. Springer, Berlin, Heidelberg (2011) 125–133. [CrossRef] [Google Scholar]
  2. D.G. Aronson and H.F. Weinberger, Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation. Springer Berlin Heidelberg, Berlin, Heidelberg (1975) 5–49. [Google Scholar]
  3. B.V. Asokan and N. Zabaras, A stochastic variational multiscale method for diffusion in heterogeneous random media. J. Comput. Phys. 218 (2006) 654–676. [CrossRef] [Google Scholar]
  4. K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, Vol. 39. Springer (2009). [Google Scholar]
  5. M.S. Bartlett, An inverse matrix adjustment arising in discriminant analysis. Ann. Math. Stat. 22 (1951) 107–111. [CrossRef] [Google Scholar]
  6. A.D. Bazykin, Hypothetical mechanism of speciation. Evolution 23 (1969) 685–687. [Google Scholar]
  7. T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45 (1999) 601–620. [CrossRef] [Google Scholar]
  8. F. Ben Belgacem The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230 (2011) 2345–2367. [CrossRef] [Google Scholar]
  10. B.H. Bradshaw-Hajek and P. Broadbridge, A robust cubic reaction-diffusion system for gene propagation. Math. Comput. Model. 39 (2004) 1151–1163. [CrossRef] [Google Scholar]
  11. F. Brezzi, J.-L. Lions and O. Pironneau, Analysis of a Chimera method. C. R. Acad. Sci. Ser. I – Math. 332 (2001) 655–660. [Google Scholar]
  12. C. Canuto and T. Kozubek, A fictitious domain approach to the numerical solution of PDEs in stochastic domains. Numer. Math. 107 (2007) 257. [CrossRef] [MathSciNet] [Google Scholar]
  13. G.C. Cawley and N.L.C. Talbot, Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw. 17 (2004) 1467–1475. [CrossRef] [PubMed] [Google Scholar]
  14. L. Chamoin, J.T. Oden and S. Prudhomme, A stochastic coupling method for atomic-to-continuum Monte-Carlo simulations. Comput. Methods Appl. Mech. Eng. 197 (2008) 3530–3546. [CrossRef] [Google Scholar]
  15. O. Chapelle, V. Vapnik and Y. Bengio, Model selection for small sample regression. Mach. Learn. 48 (2002) 9–23. [CrossRef] [Google Scholar]
  16. M. Chevreuil, A. Nouy and E. Safatly, A multiscale method with patch for the solution of stochastic partial differential equationswith localized uncertainties. Comput. Methods Appl. Mech. Eng. 255 (2013) 255–274. [CrossRef] [Google Scholar]
  17. A. Chkifa, A. Cohen, R. DeVore and C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: M2AN 47 (2013) 253–280. [CrossRef] [EDP Sciences] [Google Scholar]
  18. A. Chkifa, A. Cohen, G. Migliorati, F. Nobile and R. Tempone, Discrete least squares polynomial approximation with random evaluations – application to parametric and stochastic elliptic PDEs. ESAIM: M2AN 49 (2015) 815–837. [CrossRef] [EDP Sciences] [Google Scholar]
  19. R. Cottereau, D. Clouteau, H. Ben Dhia and C. Zaccardi, A stochastic-deterministic coupling method for continuum mechanics. Comput. Methods Appl. Mech. Eng. 200 (2011) 3280–3288. [CrossRef] [Google Scholar]
  20. H.B. Dhia, Problèmes mécaniques multi-échelles: la méthode Arlequin – multiscale mechanical problems: the Arlequin method. C. R. Acad. Sci. Ser. IIB – Mech.-Phys.-Astron. 326 (1998) 899–904. [Google Scholar]
  21. P. Dostert, Y. Efendiev and T.Y. Hou, Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput. Methods Appl. Mech. Eng. 197 (2008) 3445–3455. [CrossRef] [Google Scholar]
  22. M. Duval, J.-C. Passieux, M. Salaün and S. Guinard, Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition. Arch. Comput. Methods Eng. 23 (2016) 17–38. [CrossRef] [Google Scholar]
  23. B.F. Edwards, Poiseuille advection of chemical reaction fronts. Phys. Rev. Lett. 89 (2002) 104501. [CrossRef] [PubMed] [Google Scholar]
  24. Y. Efendiev and T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications. Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer-Verlag, New York (2009). [Google Scholar]
  25. Y. Efendiev, T.Y. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2 (2004) 553–589. [Google Scholar]
  26. B. Ganapathysubramanian and N. Zabaras, Modeling diffusion in random heterogeneous media: data-driven models, stochastic collocation and the variational multiscale method. J. Comput. Phys. 226 (2007) 326–353. [CrossRef] [Google Scholar]
  27. B. Ganapathysubramanian and N. Zabaras, A stochastic multiscale framework for modeling flow through random heterogeneous porous media. J. Comput. Phys. 228 (2009) 591–618. [CrossRef] [Google Scholar]
  28. B. Ganis, I. Yotov and M. Zhong, A stochastic mortar mixed finite element method for flow in porous media with multiple rock types. SIAM J. Sci. Comput. 33 (2011) 1439–1474. [CrossRef] [Google Scholar]
  29. L. Gendre, O. Allix, P. Gosselet and F. Comte, Non-intrusive and exact global/local techniques for structural problems with local plasticity. Comput. Mech. 44 (2009) 233–245. [CrossRef] [Google Scholar]
  30. L. Gendre, O. Allix and P. Gosselet, A two-scale approximation of the Schur complement and its use for non-intrusive coupling. Int. J. Numer. Methods Eng. 87 (2011) 889–905. [CrossRef] [Google Scholar]
  31. V. Ginting, A. Målqvist and M. Presho, A novel method for solving multiscale elliptic problems with randomly perturbed data. Multiscale Model. Simul. 8 (2010) 977–996. [CrossRef] [Google Scholar]
  32. L. Giraldi, A. Litvinenko, D. Liu, H. Matthies and A. Nouy, To be or not to be intrusive? The solution of parametric and stochastic equations—the “Plain Vanilla” Galerkin case. SIAM J. Sci. Comput. 36 (2014) A2720–A2744. [CrossRef] [Google Scholar]
  33. L. Giraldi, D. Liu, H.G. Matthies and A. Nouy, To be or not to be intrusive? The solution of parametric and stochastic equations—proper generalized decomposition. SIAM J. Sci. Comput. 37 (2015) A347–A368. [CrossRef] [Google Scholar]
  34. R. Glowinski, J. He, A. Lozinski, J. Rappaz and J. Wagner, Finite element approximation of multi-scale elliptic problems using patches of elements. Numer. Math. 101 (2005) 663–687. [CrossRef] [Google Scholar]
  35. A. Gravouil, J. Rannou and M.-C. Baïetto, A local multi-grid X-FEM approach for 3D fatigue crack growth. Int. J. Mater. Form. 1 (2008) 1103–1106. [CrossRef] [Google Scholar]
  36. C. Hager, P. Hauret, P. Le Tallec and B.I. Wohlmuth, Solving dynamic contact problems with local refinement in space and time. Comput. Methods Appl. Mech. Eng. 201–204 (2012) 25–41. [CrossRef] [Google Scholar]
  37. A. Hanna, A. Saul and K. Showalter, Detailed studies of propagating fronts in the iodate oxidation of arsenous acid. J. Am. Chem. Soc. 104 (1982) 3838–3844. [CrossRef] [Google Scholar]
  38. J. He, A. Lozinski and J. Rappaz, Accelerating the method of finite element patches using approximately harmonic functions. C. R. Math. 345 (2007) 107–112. [CrossRef] [Google Scholar]
  39. P. Henning and M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete Contin. Dyn. Syst. – Ser. S 8 (2015) 119–150. [CrossRef] [MathSciNet] [Google Scholar]
  40. P. Henning, A. Målqvist and D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: M2AN 48 (2014) 1331–1349. [CrossRef] [EDP Sciences] [Google Scholar]
  41. T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet] [Google Scholar]
  42. J. Huang and B.F. Edwards, Pattern formation and evolution near autocatalytic reaction fronts in a narrow vertical slab. Phys. Rev. E 54 (1996) 2620–2627. [CrossRef] [Google Scholar]
  43. T.J.R. Hughes, G.R. Feijóo, L. Mazzei and J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24, Advances in Stabilized Methods in Computational Mechanics. [CrossRef] [MathSciNet] [Google Scholar]
  44. B.M. Irons and R.C. Tuck, A version of the Aitken accelerator for computer iteration. Int. J. Numer. Methods Eng. 1 (1969) 275–277. [CrossRef] [Google Scholar]
  45. C. Jin, X. Cai and C. Li, Parallel domain decomposition methods for stochastic elliptic equations. SIAM J. Sci. Comput. 29 (2007) 2096–2114. [CrossRef] [Google Scholar]
  46. M. Kærn and M. Menzinger, Propagation of excitation pulses and autocatalytic fronts in packed-bed reactors. J. Phys. Chem. B 106 (2002) 3751–3758. [CrossRef] [Google Scholar]
  47. C. Kim, R. Lazarov, J. Pasciak and P. Vassilevski, Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39 (2001) 519–538. [CrossRef] [MathSciNet] [Google Scholar]
  48. I.V. Koptyug, V.V. Zhivonitko and R.Z. Sagdeev, Advection of chemical reaction fronts in a porous medium. J. Phys. Chem. B 112 (2008) 1170–1176. [CrossRef] [PubMed] [Google Scholar]
  49. U. Küttler and W.A. Wall, Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput. Mech. 43 (2008) 61–72. [CrossRef] [Google Scholar]
  50. M. Leconte, J. Martin, N. Rakotomalala and D. Salin, Pattern of reaction diffusion fronts in laminar flows. Phys. Rev. Lett. 90 (2003) 128302. [CrossRef] [PubMed] [Google Scholar]
  51. C. Le Bris, F. Legoll and F. Thomines, Multiscale finite element approach for “weakly” random problems and related issues. ESAIM: M2AN 48 (2014) 815–858. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  52. O.P. Le Maître and O.M. Knio, Spectral Methods for Uncertainty Quantification With Applications to Computational Fluid Dynamics. Springer, Netherlands (2010). [CrossRef] [Google Scholar]
  53. J.-L. Lions and O. Pironneau, Domain decomposition methods for CAD. C. R. Acad. Sci. Ser. I – Math. 328 (1999) 73–80. [Google Scholar]
  54. Y.J. Liu, Q. Sun and X.L. Fan, A non-intrusive global/local algorithm with non-matching interface: derivation and numerical validation. Comput. Methods Appl. Mech. Eng. 277 (2014) 81–103. [CrossRef] [Google Scholar]
  55. A. Lozinski, Méthodes numériques et modélisation pour certains problèmes multi-échelles. Habilitation à diriger des recherches, Université Paul Sabatier, Toulouse 3, France (2010). [Google Scholar]
  56. A.J. Macleod, Acceleration of vector sequences by multi-dimensional ∆2 methods. Commun. Appl. Numer. Methods 2 (1986) 385–392. [CrossRef] [Google Scholar]
  57. H.G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194 (2005) 1295–1331. [CrossRef] [MathSciNet] [Google Scholar]
  58. N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46 (1999) 131–150. [Google Scholar]
  59. V.A.B. Narayanan and N. Zabaras, Variational multiscale stabilized FEM formulations for transport equations: stochastic advection–diffusion and incompressible stochastic Navier–Stokes equations. J. Comput. Phys. 202 (2005) 94–133. [CrossRef] [Google Scholar]
  60. J.M. Nordbotten, Variational and Heterogeneous Multiscale Methods. Springer Berlin Heidelberg, Berlin, Heidelberg (2010) 713–720. [Google Scholar]
  61. A. Nouy, Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch. Comput. Methods Eng. 16 (2009) 251–285. [CrossRef] [Google Scholar]
  62. A. Nouy, A. Clément, F. Schoefs and N. Moës, An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput. Methods Appl. Mech. Eng. 197 (2008) 4663–4682. [CrossRef] [Google Scholar]
  63. A. Nouy, M. Chevreuil and E. Safatly, Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains. Comput. Methods Appl. Mech. Eng. 200 (2011) 3066–3082. [CrossRef] [Google Scholar]
  64. J.C. Passieux, A. Gravouil, J. Réthoré and M.C. Baïetto, Direct estimation of generalized stress intensity factors using a three-scale concurrent multigrid X-FEM. Int. J. Numer. Methods Eng. 85 (2011) 1648–1666. [CrossRef] [Google Scholar]
  65. J.-C. Passieux, J. Réthoré, A. Gravouil and M.-C. Baïetto, Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver. Comput. Mech. 52 (2013) 1381–1393. [CrossRef] [Google Scholar]
  66. O. Pironneau, A. Lozinski, A. Perronnet and F. Hecht, Numerical zoom for multiscale problems with an application to flows through porous media. Discrete Contin. Dyn. Syst. A 23 (2009) 265–280. [Google Scholar]
  67. J. Rannou, A. Gravouil and M.C. Baïetto-Dubourg, A local multigrid X-FEM strategy for 3-D crack propagation. Int. J. Numer. Methods Eng. 77 (2009) 581–600. [CrossRef] [Google Scholar]
  68. T. Roubíček, Nonlinear Partial Differential Equations With Applications, Vol. 153. Springer (2005). [Google Scholar]
  69. S. Saha, S. Atis, D. Salin and L. Talon, Phase diagram of sustained wave fronts opposing the flow in disordered porous media. EPL (Europhys. Lett.) 101 (2013) 38003. [CrossRef] [Google Scholar]
  70. A. Sarkar, N. Benabbou and R. Ghanem, Domain decomposition of stochastic PDEs: theoretical formulations. Int. J. Numer. Methods Eng. 77 (2009) 689–701. [CrossRef] [Google Scholar]
  71. R.S. Spangler and B.F. Edwards, Poiseuille advection of chemical reaction fronts: eikonal approximation. J. Chem. Phys. 118 (2003) 5911–5915. [CrossRef] [Google Scholar]
  72. J.L. Steger, F.C. Dougherty and J.A. Benek, A Chimera grid scheme, in Advances in Grid Generation, Vol. 5, edited by K.N. Ghia and U. Ghia. American Society of Mechanical Engineers, FED, New York (1983) 59–69. [Google Scholar]
  73. E. Stein and S. Ohnimus, Coupled model- and solution-adaptivity in the finite-element method. Comput. Methods Appl. Mech. Eng. 150 (1997) 327–350. [CrossRef] [MathSciNet] [Google Scholar]
  74. T. Strouboulis, I. Babuška and K. Copps, The design and analysis of the Generalized Finite Element Method. Comput. Methods Appl. Mech. Eng. 181 (2000) 43–69. [CrossRef] [Google Scholar]
  75. B. Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93 (2008) 964–979. [CrossRef] [Google Scholar]
  76. D.M. Tartakovsky and D. Xiu, Stochastic analysis of transport in tubes with rough walls. J. Comput. Phys. 217 (2006) 248–259, Uncertainty Quantification in Simulation Science. [CrossRef] [Google Scholar]
  77. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. Wiley-Teubner, Stuttgart (1996). [Google Scholar]
  78. E. Weinan and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. [CrossRef] [MathSciNet] [Google Scholar]
  79. M.F. Wheeler, T. Wildey and I. Yotov, A multiscale preconditioner for stochastic mortar mixed finite elements. Comput. Methods Appl. Mech. Eng. 200 (2011) 1251–1262. [CrossRef] [Google Scholar]
  80. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition. Vol. 17 of Lecture Notes in Computational Science and Engineering. Springer, Berlin, New York (2001). [CrossRef] [Google Scholar]
  81. D. Xiu, Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5 (2009) 242–272. [Google Scholar]
  82. D. Xiu and D.M. Tartakovsky, Numerical methods for differential equations in random domains. SIAM J. Sci. Comput. 28 (2006) 1167–1185. [CrossRef] [Google Scholar]
  83. X.F. Xu, A multiscale stochastic finite element method on elliptic problems involving uncertainties. Comput. Methods Appl. Mech. Eng. 196 (2007) 2723–2736. [CrossRef] [Google Scholar]
  84. X.F. Xu, X. Chen and L. Shen, A Green-function-based multiscale method for uncertainty quantification of finite body random heterogeneous materials. Comput. Struct. 87 (2009) 1416–1426. [CrossRef] [Google Scholar]
  85. K. Zhang, R. Zhang, Y. Yin and S. Yu, Domain decomposition methods for linear and semilinear elliptic stochastic partial differential equations. Appl. Math. Comput. 195 (2008) 630–640. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you