Open Access
Volume 52, Number 5, September–October 2018
Page(s) 1679 - 1707
Published online 22 November 2018
  1. E. Audusse, A multilayer Saint-Venant model: derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 189–214. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Audusse, M.-O. Bristeau, B. Perthame and J. Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: M2AN 45 (2011) 169–200. [CrossRef] [EDP Sciences] [Google Scholar]
  4. A. Bermudez and M.E Vazquez, Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23 (1994) 1049–1071. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Berthelin, Existence and weak stability for a pressureless model with unilateral constraint. Math. Model. Methods Appl. Sci. 12 (2002) 249–272. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Berthelin and F. Bouchut, Weak solutions for a hyperbolic system with unilateral constraint and mass loss. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 20 (2003) 975–997. [CrossRef] [Google Scholar]
  7. F. Berthelin, P. Degond, V. Le Blanc, S. Moutari, M. Rascle and J. Royer, A traffic-flow model with constraints for the modeling of traffic jams. Math. Model. Methods Appl. Sci. 18 (2008) 1269–1298. [CrossRef] [Google Scholar]
  8. F. Bouchut, Y. Brenier, J. Cortes and J.-F. Ripoll, A hierarchy of models for two-phase flows. J. Nonlinear Sci. 10 (2000) 639–660. [CrossRef] [Google Scholar]
  9. C. Bourdarias, M. Ersoy and S. Gerbi, A mathematical model for unsteady mixed flows in closed water pipes. Sci. Chin. Math. 55 (2012) 221–244. [CrossRef] [Google Scholar]
  10. C. Bourdarias and S. Gerbi, A finite volume scheme for a model coupling free surface and pressurised flows in pipes. J. Comput. Appl. Math. 209 (2007) 109–131. [CrossRef] [Google Scholar]
  11. K. Brenner and C. Cancès, Improving Newton’s method performance by parametrization: the case of Richards equation. SIAM J. Numer. Anal. 55 (2017) 1760–1785. [CrossRef] [Google Scholar]
  12. M.-O. Bristeau, A. Mangeney, J. Sainte-Marie and N. Seguin, An energy-consistent depth-averaged Euler system: derivation and properties. Discrete Contin. Dyn. Syst. Ser. B 20 (2015) 961–988. [CrossRef] [Google Scholar]
  13. H. Capart, X. Sillen and Y. Zech, Numerical and experimental water transients in sewer pipes. J. Hydraul. Res. 35 (1997) 659–672. [CrossRef] [Google Scholar]
  14. M. Castro, J.M. Gallardo, J.A. López-García and C. Parés, Well-balanced high order extensions of Godunov’s method for semilinear balance laws. SIAM J. Numer. Anal. 46 (2008) 1012–1039. [CrossRef] [Google Scholar]
  15. C. Chalons, M. Girardin and S. Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equationswith source terms. SIAM J. Sci. Comput. 35 (2013) A2874–A2902. [CrossRef] [Google Scholar]
  16. H. Chanson, Hydraulics of Open Channel Flow. Elsevier Science (2004). [Google Scholar]
  17. A. J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. [CrossRef] [MathSciNet] [Google Scholar]
  18. G. Dal Maso, P. G. LeFloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. [Google Scholar]
  19. S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229 (2010) 978–1016. [CrossRef] [MathSciNet] [Google Scholar]
  20. B. Després, A geometrical approach to nonconservative shocks and elastoplastic shocks. Arch. Ration. Mech. Anal. 186 (2007) 275–308. [CrossRef] [Google Scholar]
  21. B. Després, F. Lagoutière and N. Seguin, Weak solutions to Friedrichs systems with convex constraints. Nonlinearity 24 (2011) 3055–3081. [CrossRef] [Google Scholar]
  22. F. Dubois and P. G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equ. 71 (1988) 93–122. [CrossRef] [MathSciNet] [Google Scholar]
  23. E. D. Fernandez-Nieto, M. Parisot, Y. Penel and J. Sainte-Marie, A hierarchy of non-hydrostatic layer-averaged approximation of Euler equations for free surface flows. Working paper or preprint [hal-01324012] (2017). [Google Scholar]
  24. M. Fuamba, Contribution on transient flow modelling in storm sewers. J. Hydraul. Res. 40 (2002) 685–693. [CrossRef] [Google Scholar]
  25. J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89–102. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. M. Greenberg and A.-Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  27. H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Comput. Fluids 33 (2004) 655–675. [CrossRef] [Google Scholar]
  28. R. Herbin, W. Kheriji and J.-C. Latché, On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. ESAIM: M2AN 48 (2014) 1807–1857. [CrossRef] [EDP Sciences] [Google Scholar]
  29. S. Jin and X. Wen, Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput. 26 (2005) 2079–2101. [CrossRef] [MathSciNet] [Google Scholar]
  30. M. Kashiwagi, Non-linear simulations of wave-induced motions of a floating body by means of the mixed Eulerian-Lagrangian method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 214 (2000) 841–855. [CrossRef] [Google Scholar]
  31. S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. [CrossRef] [Google Scholar]
  32. S. Klainerman and A. Majda, Compressible and incompressible fluids. Commun. Pure Appl. Math. 35 (1982) 629–651. [CrossRef] [MathSciNet] [Google Scholar]
  33. D. Lannes, On the dynamics of floating structures. Ann. PDE 3 (2017) 11. [CrossRef] [Google Scholar]
  34. D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21 (2009) 016601. [CrossRef] [Google Scholar]
  35. L. Levi, Obstacle problems for scalar conservation laws. ESAIM: M2AN 35 (2001) 575–593. [CrossRef] [EDP Sciences] [Google Scholar]
  36. P.-L. Lions and N. Masmoudi, On a free boundary barotropic model. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 16 (1999) 373–410. [CrossRef] [Google Scholar]
  37. B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling. Netw. Heterog. Media 6 (2011) 485–519. [CrossRef] [Google Scholar]
  38. V. Michel-Dansac, C. Berthon, S. Clain and F. Foucher, A well-balanced scheme for the shallow-water equations with topography or manning friction. J. Comput. Phys. 335 (2017) 115–154. [CrossRef] [Google Scholar]
  39. S. Noelle, Y. Xing and C.-W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226 (2007) 29–58. [CrossRef] [MathSciNet] [Google Scholar]
  40. M. Parisot and J.-P. Vila, Centered-potential regularization for the advection upstream splitting method. SIAM J. Numer. Anal. 54 (2016) 3083–3104. [CrossRef] [Google Scholar]
  41. C. Perrin and E. Zatorska, Free/congested two-phase model from weak solutions to multi-dimensional compressible Navier-Stokes equations. Commun. PDE 40 (2015) 1558–1589. [CrossRef] [Google Scholar]
  42. B. Perthame, PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl. Math. 49 (2004) 539–564. [CrossRef] [MathSciNet] [Google Scholar]
  43. A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci. 2 (2000) 163–197. [CrossRef] [Google Scholar]
  44. R. Rannacher, On Chorin’s Projection Method for the Incompressible Navier-Stokes Equations. Springer, Berlin, Heidelberg (1992) 167–183. [Google Scholar]
  45. J. Shen, Pseudo-compressibility methods for the unsteady incompressible Navier-Stokes equations. Proc. of the 1994 Beijing Symposium on Nonlinear Evolution Equations and Infinite Dynamical Systems (1997) 68–78. [Google Scholar]
  46. R. Témam, Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I). Arch. Ration. Mech. Anal. 32 (1969) 135–153. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you