Free Access
Issue
ESAIM: M2AN
Volume 53, Number 2, March-April 2019
Page(s) 443 - 473
DOI https://doi.org/10.1051/m2an/2018060
Published online 24 April 2019
  1. G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115–124. [CrossRef] [MathSciNet] [Google Scholar]
  2. W. Auzinger, H. Hofstätter, O. Koch and M. Thalhammer, Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case. J. Comput. Appl. Math. 273 (2015) 182-204. [Google Scholar]
  3. P. Bader, A. Iserles, K. Kropielnicka and P. Singh, Effective approximation for the semiclassical Schrödinger equation. Found. Comput. Math. 14 (2014) 689–720 [CrossRef] [Google Scholar]
  4. P. Bader, A. Iserles, K. Kropielnicka and P. Singh, Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential, Proc. R. Soc. Lond. Ser. A 472 (2016) 20150733, 18. [Google Scholar]
  5. W. Bao, S. Jin and P.A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175 (2002) 487-524. [Google Scholar]
  6. W. Bao, S. Jin and P.A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25 (2003) 27–64. [Google Scholar]
  7. C. Besse, Relaxation scheme for time dependent nonlinear Schrödinger equations. In: Mathematical and Numerical Aspects of Wave Propagation (Santiago de Compostela, 2000). SIAM, Philadelphia, PA (2000) 605–609. [Google Scholar]
  8. C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26–40. [Google Scholar]
  9. C. Besse, R. Carles and F. Méhats, An asymptotic preserving scheme based on a new formulation for NLS in the semiclassical limit. Multiscale Model. Simul. 11 (2013) 1228-1260. [Google Scholar]
  10. S. Blanes, F. Casas, P. Chartier and A. Murua, Optimized high-order splitting methods for some classes of parabolic equations. Math. Comput. 82 (2012) 1559–1576. [Google Scholar]
  11. M. Caliari, A. Ostermann and C. Piazzola, A splitting approach for the magnetic Schrödinger equation. J. Comput. Appl. Math. 316 (2017) 74–85. [Google Scholar]
  12. R. Carles, Semi-classical Analysis for Nonlinear Schrödinger Equations. World Scientific, Singapore (2008). [CrossRef] [Google Scholar]
  13. R. Carles, On Fourier time-splitting methods for nonlinear Schrödinger equations in the semiclassical limit. SIAM J. Numer. Anal. 51 (2013) 3232–3258. [MathSciNet] [Google Scholar]
  14. R. Carles, R. Danchin and J.-C. Saut, Madelung, Gross–Pitaevskii and Korteweg. Nonlinearity 25 (2012) 2843–2873. [Google Scholar]
  15. P. Degond, S. Gallego and F. Méhats, An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit. C. R. Acad. Sci., Paris 345 (2007) 531–536. [CrossRef] [Google Scholar]
  16. M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44 (1981) 277–288. [Google Scholar]
  17. S. Descombes and M. Thalhammer, An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime. BIT. Numer. Math. 50 (2010) 729–749. [Google Scholar]
  18. S. Descombes and M. Thalhammer, The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime. IMA J. Numer. Anal. 33 (2013) 722–745. [CrossRef] [Google Scholar]
  19. L. Einkemmer and A. Ostermann, On the error propagation of semi-Lagrange and Fourier methods for advection problems. Comput. Math. Appl. 69 (2015) 170–179. [CrossRef] [PubMed] [Google Scholar]
  20. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (1998). [Google Scholar]
  21. E. Faou, V. Gradinaru and C. Lubich, Computing semiclassical quantum dynamics with Hagedorn wavepackets. SIAM J. Sci. Comput. 31 (2009) 3027–3041. [Google Scholar]
  22. E. Faou and C. Lubich, A Poisson integrator for Gaussian wavepacket dynamics. Comput. Vis. Sci. 9 (2006) 45–55. [Google Scholar]
  23. V. Gradinaru and G.A. Hagedorn, Convergence of a semiclassical wavepacket based time-splitting for the Schrödinger equation. Numer. Math. 126 (2014) 53–73. [Google Scholar]
  24. N. Risebro, H. Holden and C. Lubich, Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comp. 82 (2012) 13. [Google Scholar]
  25. S. Jin, P. Markowich and C. Sparber, Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20 (2011) 121–209. [CrossRef] [MathSciNet] [Google Scholar]
  26. O. Karakashian, G.D. Akrivis and V.A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30 (1993) 377–400. [Google Scholar]
  27. T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Reprint of the 1980 edition. Springer-Verlag, Berlin (1995). [Google Scholar]
  28. T. Kato and G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41 (1988) 891–907. [CrossRef] [MathSciNet] [Google Scholar]
  29. C. Lubich, On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77 (2008) 2141–2153. [Google Scholar]
  30. E. Madelung, Quanten theorie in hydrodynamischer form. Zeit. F. Phys. 40 (1927) 322–326. [CrossRef] [Google Scholar]
  31. D. Pathria and J.L. Morris, Pseudo-spectral solution of nonlinear Schrödinger equations. J. Comput. Phys. 87 (1990) 108–125. [Google Scholar]
  32. A. Pazy, Semigroups of linear operators and applications to partial differential equations. In Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]
  33. J.M. Sanz-Serna and J.G. Verwer, Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6 (1986) 25–42. [CrossRef] [Google Scholar]
  34. J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485–507. [Google Scholar]
  35. L. Wu, Dufort-Frankel-type methods for linear and nonlinear Schrödinger equations. SIAM J. Numer. Anal. 33 (1996) 1526–1533. [Google Scholar]
  36. H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262–268. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you