Open Access
Volume 53, Number 5, September-October 2019
Page(s) 1763 - 1795
Published online 26 September 2019
  1. M.R. Baer and J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. [CrossRef] [Google Scholar]
  2. J.B. Bdzil, R. Menikoff, S.F. Son, A.K. Kapila and D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: a critical examination of modeling issues. Phys. Fluids 11 (1999) 378–402. [CrossRef] [Google Scholar]
  3. G. Berthoud, Vapor explosions. Annu. Rev. Fluid Mech. 32 (2000) 573–611. [Google Scholar]
  4. W. Bo, H. Jin, D. Kim, X. Liu, H. Lee, N. Pestieau, Y. Yu, J. Glimm and J.W. Grove, Comparison and validation of multi phase closure models. Comput. Math. Appl. 56 (2008) 1291–1302. [CrossRef] [Google Scholar]
  5. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). [CrossRef] [Google Scholar]
  6. H. Boukili and J.-M. Hérard, Relaxation and simulation of a barotropic three-phase flow model. ESAIM: M2AN 53 (2019) 1031–1059. [CrossRef] [EDP Sciences] [Google Scholar]
  7. A. Chauvin, Étude expérimentale de l’atténuation d’une de choc par un nuage de gouttes et validation numérique. Ph.D. thesis, Aix-Marseille Université (2012). [Google Scholar]
  8. A. Chauvin, G. Jourdan, E. Daniel, L. Houas and R. Tosello, Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium. Phys. Fluids 23 (2011) 113301. [CrossRef] [Google Scholar]
  9. F. Coquel, E. Godlewski, B. Perthame, A. In and P. Rascle, Some new Godunov and relaxation methods for two-phase flow problems. In: Godunov methods (Oxford, 1999). Kluwer/Plenum, New York, NY (2001) 179–188. [CrossRef] [Google Scholar]
  10. F. Coquel, E. Godlewski and N. Seguin, Relaxation of fluid systems. Math. Models Methods Appl. Sci. 22 (2012) 1250014. [CrossRef] [Google Scholar]
  11. F. Coquel, J.-M. Hérard and K. Saleh, A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model. J. Comput. Phys. 330 (2017) 401–435. [CrossRef] [Google Scholar]
  12. F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model. ESAIM: M2AN 48 (2013) 165–206. [CrossRef] [EDP Sciences] [Google Scholar]
  13. F. Crouzet, F. Daude, P. Galon, P. Helluy, J.-M. Hérard, O. Hurisse and Y. Liu, Approximate solutions of the baer-nunziato model. ESAIM: Procs. 40 (2013) 63–82. [CrossRef] [Google Scholar]
  14. S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. [Google Scholar]
  15. H. Hérard and J.-M. Mathis, A three-phase flow model with two miscible phases. ESAIM: M2AN 53 (2019) 1373–1389. [CrossRef] [EDP Sciences] [Google Scholar]
  16. J.-M. Hérard, A three-phase flow model. Math. Comput. Modell. 45 (2007) 732–755. [CrossRef] [Google Scholar]
  17. J.-M. Hérard, A class of compressible multiphase flow models. C.R. Math. 354 (2016) 954–959. [CrossRef] [Google Scholar]
  18. J.-M. Hérard, K. Saleh and N. Seguin, Some mathematical properties of a hyperbolic multiphase flow model. Available at: (2018). [Google Scholar]
  19. Institut de Radioprotection et de Sûreté Nucléaire (IRSN). Reactivity Initiated Accident (RIA). Available at: [Google Scholar]
  20. H. Mathis, A thermodynamically consistent model of a liquid-vapor fluid with a gas. ESAIM: M2AN 53 (2019) 63–84. [CrossRef] [EDP Sciences] [Google Scholar]
  21. R. Meignen, B. Raverdy, S. Picchi and J. Lamome, The challenge of modeling fuel – coolant interaction: Part II – steam explosion. Nucl. Eng. Des. 280 (2014) 528–541. [CrossRef] [Google Scholar]
  22. S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component models. Continuum Mech. Thermodyn. 28 (2016) 1157–1189. [CrossRef] [MathSciNet] [Google Scholar]
  23. K. Saleh, Analyse et Simulation Numérique par Relaxation d’Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes. Ph.D. thesis Université Pierre et Marie Curie, Paris VI (2012). Available at: [Google Scholar]
  24. D.W. Schwendeman, C.W. Wahle and A.K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. [Google Scholar]
  25. I. Suliciu, On modelling phase transitions by means of rate-type constitutive equations. Shock wave structure. Int. J. Eng. Sci. 28 (1990) 829–841. [CrossRef] [MathSciNet] [Google Scholar]
  26. I. Suliciu, Some stability-instability problems in phase transitions modelled by piecewise linear elastic or viscoelastic constitutive equations. Int. J. Eng. Sci. 30 (1992) 483–494. [CrossRef] [MathSciNet] [Google Scholar]
  27. S.A. Tokareva and E.F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573–3604. [CrossRef] [Google Scholar]
  28. U.S. NRC: Glossary, Departure from Nucleate Boiling (DNB). Available at: [Google Scholar]
  29. U.S. NRC: Glossary, Loss of Coolant Accident (LOCA). Available at: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you