Open Access
Volume 54, Number 1, January-February 2020
Page(s) 181 - 228
Published online 27 January 2020
  1. G. Allaire, In: Vol. of 58 Conception optimale de structures, Springer (2007). [Google Scholar]
  2. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [Google Scholar]
  3. G. Allaire, F. De Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59. [Google Scholar]
  4. G. Allaire, C. Dapogny and P. Frey, Shape optimization with a level set based mesh evolution method. Comput. Methods Appl. Mech. Eng. 282 (2014) 22–53. [Google Scholar]
  5. G. Allaire, C. Dapogny, G. Delgado and G. Michailidis, Multi-phase structural optimization via a level set method. ESAIM: COCV 20 (2014) 576–611. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. G. Allaire, F. Jouve and G. Michailidis, Molding direction constraints in structural optimization via a level-set method. In: Variational Analysis and Aerospace Engineering. Springer (2016) 1–39. [Google Scholar]
  7. G. Allaire, F. Jouve and G. Michailidis, Thickness control in structural optimization via a level set method. Struct. Multi. Optim. 53 (2016) 1349–1382. [CrossRef] [Google Scholar]
  8. L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions. In: Calculus of Variations and Partial Differential Equations. Springer (2000) 5–93. [Google Scholar]
  9. N. Amenta, S. Choi and R.K. Kolluri, The power crust, unions of balls, and the medial axis transform. Comput. Geom. 19 (2001) 127–153. [Google Scholar]
  10. D. Attali, J.-D. Boissonnat and H. Edelsbrunner, Stability and computation of medial axes-a state-of-the-art report. In: Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Springer (2009) 109–125. [CrossRef] [Google Scholar]
  11. P. Azérad, Equations de Navier-Stokes en bassin peu profond. Ph.D. thesis, Université de Neuchâtel (1995). [Google Scholar]
  12. P. Azérad and J. Pousin, Inégalité de poincaré courbe pour le traitement variationnel de l’équation de transport. C.R. Acad. Sci. Ser. 1: Math. 322 (1996) 721–727. [Google Scholar]
  13. A. Bensalah, Une approche nouvelle de la modélisation mathématique et numérique en aéroacoustique par les équations de Goldstein et applications en aéronautique, Ph.D. thesis, Université Paris Saclay (2018). [Google Scholar]
  14. G. Bellettini, Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations, In Vol. 12. Springer (2014). [Google Scholar]
  15. P. Cannarsa and P. Cardaliaguet, Representation of equilibrium solutions to the table problem of growing sandpiles. J. Eur. Math. Soc. 6 (2004) 435–464. [CrossRef] [Google Scholar]
  16. S. Chen, M.Y. Wang and A.Q. Liu, Shape feature control in structural topology optimization. Comput.-Aided Des. 40 (2008) 951–962. [CrossRef] [Google Scholar]
  17. G. Cheng, Y. Mei and X. Wang, A feature-based structural topology optimization method. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer (2006) 505–514. [Google Scholar]
  18. C. Chicone, Ordinary Differential Equations with Applications. Springer, New York (1999). [Google Scholar]
  19. D.L. Chopp, Another look at velocity extensions in the level set method. SIAM J. Sci. Comput. 31 (2009) 3255–3273. [Google Scholar]
  20. C. Dapogny and P. Frey, Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo 49 (2012) 193–219. [CrossRef] [Google Scholar]
  21. C. Dapogny, C. Dobrzynski and P. Frey, Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262 (2014) 358–378. [Google Scholar]
  22. C. Dapogny, R. Estevez, A. Faure and G. Michailidis, Shape and topology optimization considering anisotropic features induced by additive manufacturing processes, Hal Preprint: (2017). [Google Scholar]
  23. C. Dapogny, A. Faure, G. Michailidis, G. Allaire, A. Couvelas and R. Estevez, Geometric constraints for shape and topology optimization in architectural design. Comput. Mech. 59 (2017) 933–965. [Google Scholar]
  24. G. David and S. Semmes, Uniform rectifiability and singular sets. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 13 (1996) 383–443. [CrossRef] [Google Scholar]
  25. M.C. Delfour and J.P. Zolésio, Shape analysis via distance functions. J. Funct. Anal. 123 (1994) 129–201. [Google Scholar]
  26. M.C. Delfour and J.-P. Zolesio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. InVol. 22. SIAM (2011). [Google Scholar]
  27. T.K. Dey and W. Zhao, Approximate medial axis as a voronoi subcomplex.In: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications. ACM (2002) 356–366. [Google Scholar]
  28. R.J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and sobolev spaces. Invent. Math. 98 (1989) 511–547. [Google Scholar]
  29. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. In Vol. 69 Springer Science & Business Media (2011). [Google Scholar]
  30. J. Duoandikoetxea, Forty years of muckenhoupt weights. In: Function Spaces and Inequalities. Matfyzpress, Praga (2013) 23–75. [Google Scholar]
  31. B. Erem and D.H. Brooks, Differential geometric approximation of the gradient and hessian on a triangulated manifold. In: Vol. 504(2011). [Google Scholar]
  32. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. In Vol. 159. Springer Science & Business Media (2013). [Google Scholar]
  33. W.D. Evans, Weighted sobolev spaces. Bull. London Math. Soc. 18 (1986) 220–221. [CrossRef] [Google Scholar]
  34. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press (1992). [Google Scholar]
  35. F. Feppon and P.F.J. Lermusiaux, A geometric approach to dynamical model order reduction. SIAM J. Matrix Anal. App. 39 (2018) 510–538. [CrossRef] [Google Scholar]
  36. F. Feppon, G. Allaire, F. Bordeu, J. Cortial and C. Dapogny, Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework. Hal Preprint: (2018). [Google Scholar]
  37. F. Feppon, G. Allaire, and C. Dapogny, Null space gradient flows for constrained optimization with applications to shape optimization. Hal Preprint: (2019). [Google Scholar]
  38. J.K. Guest, Imposing maximum length scale in topology optimization. Struct. Multi. Optim. 37 (2009) 463–473. [CrossRef] [Google Scholar]
  39. F. Hecht, New development in freefem++. J. Numer. Math. 20 (2013) 251–265. [Google Scholar]
  40. A. Henrot and M. Pierre, Variation et optimisation de formes: une analyse géométrique. In Vol 48. Springer Science & Business Media (2006). [Google Scholar]
  41. M. Jensen, Discontinuous Galerkin methods for Friedrichs systems with irregular solutions. Ph.D. thesis, University of Oxford (2005). [Google Scholar]
  42. T. Krainer and B.W. Schulze, Weighted Sobolev Spaces, Springer (1985). [Google Scholar]
  43. A. Kufner and B. Opic, How to define reasonably weighted sobolev spaces. Commentationes Math. Univ. Carolinae 25 (1984) 537–554. [Google Scholar]
  44. S. Lang, Fundamentals of Differential Geometry. In Vol. 191. Springer Science & Business Media (2012). [Google Scholar]
  45. Y.Y. Li and L. Nirenberg, The distance function to the boundary, finsler geometry, and the singular set of viscosity solutions of some hamilton-jacobi equations. Commun. Pure Appl. Math. 58 (2005) 85–146. [Google Scholar]
  46. J. Liu and Y. Ma, A survey of manufacturing oriented topology optimization methods. Adv. Eng. Softw. 100 (2016) 161–175. [Google Scholar]
  47. J. Luo, Z. Luo, S. Chen, L. TongandM.Y. Wang, A new level set method for systematic design of hinge-free compliant mechanisms. Comput. Methods Appl. Mech. Eng. 198 (2008) 318–331. [Google Scholar]
  48. C. Mantegazza, A.C. Mennucci, Hamilton-Jacobi equations and distance functions on riemannian manifolds. Appl. Math. Optim. 47 (2003) 1–25. [Google Scholar]
  49. M. Meyer, M. Desbrun, P. Schröder and A.H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III. Springer (2003) 35–57. [CrossRef] [Google Scholar]
  50. G. Michailidis, Manufacturing constraints and multi-phase shape and topology optimization via a level-set method. Ph.D. thesis, Ecole Polytechnique (2014). [Google Scholar]
  51. F. Murat and J. Simon, Etude de problèmes d’optimal design. Springer (1975) 54–62. [Google Scholar]
  52. E. Peynaud, Rayonnement sonore dans un écoulement subsonique complexe en régime harmonique: analyse et simulation numérique du couplage entre les phénomènes acoustiques et hydrodynamiques. Ph.D. thesis, Toulouse, INSA (2013). [Google Scholar]
  53. J.C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. In Vol. 28. Cambridge University Press, Cambridge (2001). [Google Scholar]
  54. W. Rudin, Real and Complex Analysis. Tata McGraw-Hill Education, New York, NY (2006). [Google Scholar]
  55. S. Rusinkiewicz, Estimating curvatures and their derivatives on triangle meshes. In: Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. IEEE (2004) 486–493. [Google Scholar]
  56. J. Schropp and I. Singer, A dynamical systems approach to constrained minimization. Numer. Funct. Anal. Optim. 21 (2000) 537–551. [Google Scholar]
  57. J.A. Sethian, A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93 (1996) 1591–1595. [CrossRef] [Google Scholar]
  58. J. Sokolowski and J.-P. Zolésio, Introduction to shape optimization. In: Vol. 16 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1992). [Google Scholar]
  59. L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Vol. 3. Springer Science & Business Media (2007). [Google Scholar]
  60. B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer (2007). [Google Scholar]
  61. M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192 (2003) 227–246. [Google Scholar]
  62. G.H. Yoon, S. Heo and Y.Y. Kim, Minimum thickness control at various levels for topology optimization using the wavelet method. Int. J. Solids Struct. 42 (2005) 5945–5970. [Google Scholar]
  63. H. Zhao, A fast sweeping method for eikonal equations. Math. Comput. 74 (2005) 603–627. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you