Open Access
Volume 54, Number 2, March-April 2020
Page(s) 565 - 589
Published online 25 February 2020
  1. F. Andreu, J. Mazón, J. Rossi and J. Toledo, A nonlocal p-laplacian evolution equation with neumann boundary conditions. J. Math. Pures Appl. 90 (2008) 201–227. [Google Scholar]
  2. F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi and J.J. Toledo-Melero, Nonlocal diffusion problems. In: Vol. 165 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  3. B. Bollobás and O. Riordan, Metrics for sparse graphs, edited by S. Huczynska, J.D. Mitchell and C.M.E. Roney-Dougal. In: Surveys in Combinatorics 2009. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2009) 211–288. [Google Scholar]
  4. B. Bollobás and O. Riordan, Sparse graphs: metrics and random models. Random Struct. Algorithms 39 (2011) 1–38. [Google Scholar]
  5. B. Bollobás, S. Janson and O. Riordan, The phase transition in inhomogeneous random graphs. Random Struct. Algorithms 31 (2007) 3–122. [Google Scholar]
  6. C. Borgs, J. Chayes, L. Lovász, V. Sós and K. Vesztergombi, Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing. Adv. Math. 219 (2008) 1801–1851. [Google Scholar]
  7. C. Borgs, J. Chayes, L. Lovász, V. Sós and K. Vesztergombi, Limits of randomly grown graph sequences. Eur. J. Comb. 32 (2011) 985–999. [Google Scholar]
  8. A. Buades, B. Coll and J.-M. Morel, Neighborhood filters and PDEs. Numer. Math. 105 (2006) 1–34. [Google Scholar]
  9. R.A. DeVore and G.G. Lorentz, Constructive approximation. In: Vol. 303 of Grundlehren der Mathematischen . Springer-Verlag, Berlin Heidelberg (1993). [Google Scholar]
  10. A. Elmoataz, X. Desquesnes and O. Lezoray, Non-local morphological pdes and p-laplacian equation on graphs with pplications in image processing and machine learning. IEEE J. Sel. Top. Signal Process. 6 (2012) 764–779. [Google Scholar]
  11. A. Elmoataz, M. Toutain and D. Tenbrinck, On the p-laplacian and ∞-laplacian on graphs with applications in image and data processing. SIAM J. Imaging Sci. 8 (2015) 2412–2451. [Google Scholar]
  12. P. Erdös and A. Rényi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17–61. [Google Scholar]
  13. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  14. E.N. Gilbert, Random graphs. Ann. Math. Stat. 30 (1959) 1141–1144. [Google Scholar]
  15. G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6 (2007) 595–630. [Google Scholar]
  16. G. Gilboa and S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7 (2009) 1005–1028. [Google Scholar]
  17. Y. Hafiène, J. Fadili and A. Elmoataz, Nonlocal p-laplacian evolution problems on graphs. SIAM J. Numer. Anal. 56 (2018) 1064–1090. [Google Scholar]
  18. R. Ibragimov and S. Sharakhmetov, The exact constant in the Rosenthal inequality for random variables with mean zero. Theory Probab. App. 46 (2002) 127–132. [Google Scholar]
  19. D. Kaliuzhnyi-Verbovetskyi and G. Medvedev, The semilinear heat equation on sparse random graphs. SIAM J. Math. Anal. 49 (2017) 1333–1355. [Google Scholar]
  20. S. Kindermann, S. Osher and P.W. Jones, Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4 (2005) 1091–1115. [Google Scholar]
  21. L. Lovász, Large Networks and Graph Limits. American Mathematical Society 60 (2012). [Google Scholar]
  22. L. Lovász and B. Szegedy, Limits of dense graph sequences. J. Comb. Theory Ser. B 96 (2006) 933–957. [Google Scholar]
  23. P. Massart, Concentration inequalities and model selection. In: Vol. 1896 of Ecole d’Eté de Probabilités de Saint-Flour XXXIII – 2003. Springer Verlag, New York, NY (2007). [Google Scholar]
  24. G.S. Medvedev, The nonlinear heat equation on dense graphs. SIAM J. Math. Anal. 46 (2014) 2743–2766. [Google Scholar]
  25. G.S. Medvedev, The nonlinear heat equation on W-random graphs. Arch. Ration. Mech. Anal. 212 (2014) 781–803. [Google Scholar]
  26. G.S. Medvedev, The continuum limit of the kuramoto model on sparse random graphs. Preprint arXiv:1802.03787 (2018). [Google Scholar]
  27. R.-D. Reiss, Approximate Distributions of Order Statistics with Applications to Nonparametric Statistics. Springer-Verlag, New York, NY (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you