Open Access
Volume 54, Number 5, September-October 2020
Page(s) 1569 - 1596
Published online 28 July 2020
  1. S. Benzoni-Gavage and D. Serre, Multi-Dimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications. Oxford University Press, Oxford (2007). [Google Scholar]
  2. C. Besse, P. Noble and D. Sanchez, Discrete transparent boundary conditions for the mixed KDV-BBM equation. J. Comput. Phys. 345 (2017) 484–509. [Google Scholar]
  3. G.-Q. Chen, C.D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787–830. [Google Scholar]
  4. J.F. Clarke, Gas dynamics with relaxation effects. Rep. Prog. Phys. 41 (1978) 807–864. [Google Scholar]
  5. P. Colella, A. Majda and V. Roytburd, Theoretical and numerical structure for reacting shock waves. SIAM J. Sci. Stat. Comput. 7 (1986) 1059–1080. [CrossRef] [Google Scholar]
  6. R.B. Guenther and J.W. Lee, Partial Differential Equations of Mathematical Physics and Integral Equations. Dover Publications Inc, Mineola, NY (1996). Corrected reprint of the 1988 original. [Google Scholar]
  7. B. Gustafsson, H.-O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods. 2nd ed., John Wiley & Sons, Hoboken, NJ (2013). [CrossRef] [Google Scholar]
  8. B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Ration. Mech. Anal. 169 (2003) 89–117. [Google Scholar]
  9. S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441–454. [Google Scholar]
  10. S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48 (1995) 235–276. [Google Scholar]
  11. H.-O. Kreiss, G. Scherer, Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, 1974, pp. 195–212. [CrossRef] [Google Scholar]
  12. H.-O. Kreiss, G. Scherer, On the existence of energy estimates for difference approximations for hyperbolic systems. Technical report, Uppsala University, Department of Scientific Computing, Uppsala, Sweden, 01 (1977). [Google Scholar]
  13. T.-P. Liu, Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108 (1987) 153–175. [CrossRef] [MathSciNet] [Google Scholar]
  14. T. Myint-U and L. Debnath, Linear Partial Differential Equations for Scientists and Engineers. 4th ed., Birkhäuser, Basel (2007). [Google Scholar]
  15. J.J. Stoker, The Mathematical Theory with Applications. Reprint of the 1957 original. Wiley, New York, NY (1992). [Google Scholar]
  16. B. Strand, Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110 (1994) 47–67. [Google Scholar]
  17. J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd editon. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2004). [Google Scholar]
  18. L.N. Trefethen, Spectral Methods in Matlab. SIAM, Philadelphia, PA 10 (2000). [CrossRef] [Google Scholar]
  19. L.N. Trefethen and J.A.C. Weideman, The exponentially convergent trapezoidal rule. SIAM Rev. 56 (2014) 385–458. [CrossRef] [Google Scholar]
  20. G.B. Whitham, Linear and Nonlinear Waves. John Wiley & Sons. Hoboken, NJ (1974). [Google Scholar]
  21. Z. Xin and W.-Q. Xu, Stiff well-posedness and asymptotic convergence for a class of linear relaxation systems in a quarter plane. J. Differ. Equ. 167 (2000) 388–437. [Google Scholar]
  22. W.-A. Yong, Boundary conditions for hyperbolic systems with stiff source terms. Indiana Univ. Math. J. 48 (1999) 115–137. [Google Scholar]
  23. W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Differ. Equ. 155 (1999) 89–132. [Google Scholar]
  24. W.-A. Yong, Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal. 172 (2004) 247–266. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you