Free Access
Issue |
ESAIM: M2AN
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
|
|
---|---|---|
Page(s) | S3 - S28 | |
DOI | https://doi.org/10.1051/m2an/2020022 | |
Published online | 26 February 2021 |
- G. Acosta and J.P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55 (2017) 472–495. [Google Scholar]
- G. Acosta, F. Bersetche and J.P. Borthagaray, A short FEM implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. App. 74 (2017) 784–816. [Google Scholar]
- G. Acosta, F.M. Bersetche and J.P. Borthagaray, Finite element approximations for fractional evolution problems. Fract. Calc. Appl. Anal. 22 (2019) 767–794. [Google Scholar]
- M. Ainsworth and C. Glusa, Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327 (2017) 4–35. [Google Scholar]
- M. Ainsworth and Z. Mao, Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55 (2017) 1689–1718. [Google Scholar]
- M. Ainsworth and Z. Mao, Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos, Solitons Fractals 102 (2017) 264–273. [Google Scholar]
- G. Akagi, G. Schimperna and A. Segatti, Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations. J. Differ. Equ. 261 (2016) 2935–2985. [Google Scholar]
- S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085–1095. [CrossRef] [Google Scholar]
- F.M. Bersetche, Numerical methods for non-local evolution problems. Ph.D. thesis, Universidad de Buenos Aires (2019). [Google Scholar]
- J.P. Borthagaray, L.M. Del Pezzo and S. Martnez, Finite element approximation for the fractional eigenvalue problem. J. Sci. Comput. 77 (2018) 308–329. [Google Scholar]
- A. Braides, Gamma-Convergence for Beginners. Clarendon Press. 22 (2002). [CrossRef] [Google Scholar]
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011). [Google Scholar]
- J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. [Google Scholar]
- P.M. de Carvalho Neto, Fractional differential equations: a novel study of local and global solutions in Banach spaces. Ph.D. thesis, ICMC-USP (2013). [Google Scholar]
- E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. [CrossRef] [MathSciNet] [Google Scholar]
- K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. In: Vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin (2010). [CrossRef] [Google Scholar]
- C.M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math. Comput. 58 (1992) 603–630. [Google Scholar]
- X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 110 (2016) 49–64. [Google Scholar]
- C. Gal and M. Warma, Fractional in time semilinear parabolic equations and applications. In Vol. 84 of Mathématiques et Applications (2020). [CrossRef] [Google Scholar]
- G. Grubb, Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. App. 421 (2015) 1616–1634. [Google Scholar]
- D. He, K. Pan and H. Hu, A fourth-order maximum principle preserving operator splitting scheme for three-dimensional fractional Allen-Cahn equations. Preprint arXiv:1804.07246 (2018). [Google Scholar]
- T. Hou, T. Tang and J. Yang, Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72 (2017) 1214–1231. [Google Scholar]
- B. Jin, R. Lazarov, J. Pasciak and Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35 (2014) 561–582. [Google Scholar]
- B. Jin, R. Lazarov and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38 (2016) A146–A170. [Google Scholar]
- M. Karkulik and J.M. Melenk, H-matrix approximability of inverses of discretizations of the fractional Laplacian. Adv. Comput. Math. 45 (2019) 2893–2919. [Google Scholar]
- S. Larsson, Semilinear parabolic partial differential equations: theory, approximation, and application. New Trends Math. Comput. Sci. 3 (2006) 153–194. [Google Scholar]
- Z. Li, H. Wang and D. Yang, A space–time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation. J. Comput. Phys. 347 (2017) 20–38. [Google Scholar]
- H. Liu, A. Cheng, H. Wang and J. Zhao, Time-fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical investigation. Comput. Math. App. 76 (2018) 1876–1892. [Google Scholar]
- C. Lubich, Convolution quadrature and discretized operational calculus. I. Numer. Math. 52 (1988) 129–145. [Google Scholar]
- C. Lubich, Convolution quadrature revisited. BIT 44 (2004) 503–514. [Google Scholar]
- K. Mikkola, Infinite-dimensional linear systems, optimal control and algebraic Riccati equations. Ph.D. thesis, Helsinki University of Technology Institute of Mathematics (2002). [Google Scholar]
- I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. In: Vol. 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA (1999). [Google Scholar]
- X. Ros-Oton and J. Serra, Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Disc. Contin. Dyn. Syst. 35 (2015) 2131–2150. [Google Scholar]
- O. Savin and E. Valdinoci, γ-convergence for nonlocal phase transitions. In: Vol. 29 of Annales de l’Institut Henri Poincaré (C) Non Linear Analysis. Elsevier Masson (2012) 479–500. [Google Scholar]
- F. Song, C. Xu and G.E. Karniadakis, A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Eng. 305 (2016) 376–404. [Google Scholar]
- M. Stynes, Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19 (2016) 1554–1562. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.