Free Access
Issue
ESAIM: M2AN
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S29 - S64
DOI https://doi.org/10.1051/m2an/2020021
Published online 26 February 2021
  1. A.A. Abushama and B. Bialecki, Modified nodal cubic spline collocation for Poisson’s equation. SIAM J. Numer. Anal. 46 (2008) 397–418. [Google Scholar]
  2. S. Amat and J. Liandrat, On the stability of the PPH nonlinear multiresolution. Appl. Comput. Harmon. Anal. 18 (2005) 198–206. [Google Scholar]
  3. S. Amat and J. Ruiz, New WENO smoothness indicators computationally efficient in the presence of corner discontinuities. J. Sci. Comput. 71 (2017) 1265–1302. [Google Scholar]
  4. S. Amat, F. Aràndiga, A. Cohen, R. Donat, G. Garcia and M. von Oehsen, Data compression with ENO schemes: a case study. Appl. Comput. Harmon. Anal. 11 (2001) 273–288. [Google Scholar]
  5. S. Amat, S. Busquier and J.C. Trillo, On multiresolution schemes using a stencil selection procedure: applications to ENO schemes. Numer. Algorithms 44 (2007) 45–68. [Google Scholar]
  6. S. Amat, K. Dadourian, J. Liandrat, J. Ruiz and J.C. Trillo, On a class of L1-stable nonlinear cell-average multiresolution schemes. J. Comput. Appl. Math. 234 (2010) 1129–1139. [Google Scholar]
  7. S. Amat, S. Busquier, M. Legaz, F. Manzano and J. Ruiz, Reciprocal polynomial extrapolation vs Richardson extrapolation for singular perturbed boundary problems. Numer. Algorithms 61 (2012) 631–647. [Google Scholar]
  8. S. Amat, J. Liandrat, J. Ruiz and J. Trillo, On a compact non-extrapolating scheme for adaptive image interpolation. J. Franklin Inst. 349 (2012) 1637–1647. [Google Scholar]
  9. S. Amat, J. Ruiz and J.C. Trillo, Adaptive interpolation of images using a new nonlinear cell-average scheme. Math. Comput. Simul. 82 (2012) 1586–1596. [Google Scholar]
  10. S. Amat, K. Dadourian, J. Liandrat and J. Trillo, High order nonlinear interpolatory reconstruction operators and associated multiresolution schemes. J. Comput. Appl. Math. 253 (2013) 163–180. [Google Scholar]
  11. S. Amat, J. Ruiz and J.C. Trillo, Improving the compression rate versus L1 error ratio in cell-average error control algorithms. Numer. Algorithms 67 (2014) 145–162. [Google Scholar]
  12. S. Amat, J. Liandrat, J. Ruiz and J. Trillo, On a family of nonlinear cell-average multiresolution schemes for image processing. Math. Comput. Simul. 118 (2015) 30–48. [Google Scholar]
  13. S. Amat, J. Liandrat, J. Ruiz and J.C. Trillo, On a power WENO scheme with improved accuracy near discontinuities. SIAM J. Sci. Comput. 39 (2017) A2472–A2507. [Google Scholar]
  14. S. Amat, J. Ruiz and J.C. Trillo, On an algorithm to adapt spline approximations to the presence of discontinuities. Numer. Algorithms 80 (2019) 903–936. [Google Scholar]
  15. F. Aràndiga and R. Donat, Nonlinear multiscale decompositions: the approach of A. Harten. Numer. Algorithms 23 (2000) 175–216. [Google Scholar]
  16. F. Arandiga, A. Cohen, R. Donat, N. Dynand B. Matei, Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques. Special Issue on Mathematical Imaging – Part II. Appl. Comput. Harmon. Anal. 24 (2008) 225–250. [Google Scholar]
  17. F. Aràndiga, A. Belda and P. Mulet, Point-value WENO multiresolution applications to stable image compression. J. Sci. Comput. 43 (2010) 158–182. [Google Scholar]
  18. A.K.B. Chand and G.P. Kapoor, Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44 (2006) 655–676. [Google Scholar]
  19. A. Cohen, N. Dyn and B. Matei, Quasi linear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15 (2003) 89–116. [Google Scholar]
  20. O. Davydov and L.L. Schumaker, Stable approximation and interpolation with C1 quartic bivariate splines. SIAM J. Numer. Anal 39 (2002) 1732–1748. [Google Scholar]
  21. C. de Boor, A Practical Guide to Splines. SIAM, Springer-Verlag New York 27 (1980). [Google Scholar]
  22. R. Devore, Nonlinear approximation. Acta Numer. 7 (1998) 51–150. [Google Scholar]
  23. M.S. Floater and M.-J. Lai, Polygonal spline spaces and the numerical solution of the Poisson equation. SIAM J. Numer. Anal. 54 (2016) 797–824. [Google Scholar]
  24. J. Foster and F.B. Richards, Gibbs-Wilbraham splines. Constr. Approx. 11 (1995) 37–52. [Google Scholar]
  25. D. Gottlieb and C.-W. Shu, On the Gibbs phenomenon and its resolution. SIAM Rev. 39 (1997) 644–668. [Google Scholar]
  26. A. Harten, Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33 (1996) 1205–1256. [Google Scholar]
  27. A. Harten, Multiresolution representation of data II. SIAM J. Numer. Anal. 33 (1996) 1205–1256. [Google Scholar]
  28. A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24 (1987) 279–309. [Google Scholar]
  29. A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes. III. J. Comput. Phys. 71 (1987) 231–303. [Google Scholar]
  30. F. Richards, A Gibbs phenomenon for spline functions. J. Approx. Theory 66 (1991) 334–351. [Google Scholar]
  31. L.L. Schumaker, Spline Functions: Computational Methods, SIAM. Springer-Verlag, New York (2015). [Google Scholar]
  32. D. Schweikert, An interpolation curve using splines in tension. J. Math. Phys. 45 (1966) 312–317. [Google Scholar]
  33. S. Serna and A. Marquina, Power ENO methods: a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194 (2004) 632–658. [Google Scholar]
  34. C.-W. Shu, Order ENO and WENO Schemes for Computational Fluid Dynamics. Springer, Berlin, Heidelberg (1999) 439–582. [Google Scholar]
  35. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439–471. [Google Scholar]
  36. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83 (1989) 32–78. [Google Scholar]
  37. H. Späth, Exponential spline interpolation. Computing 4 (1969) 225–233. [Google Scholar]
  38. R.A. Usmani, Inversion of Jacobi’s tridiagonal matrix. Comput. Math. App. 27 (1994) 59–66. [Google Scholar]
  39. Z. Zhang and C.F. Martin, Convergence and Gibbs’ phenomenon in cubic spline interpolation of discontinuous functions. J. Comput. Appl. Math. 87 (1997) 359–371. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you