Free Access
Issue
ESAIM: M2AN
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S397 - S416
DOI https://doi.org/10.1051/m2an/2020040
Published online 26 February 2021
  1. Y.N. Abousleiman, A.H.-D. Cheng and F.-J. Ulm, editors, Poromechanics III: Biot Centennial (1905–2005). Taylor & Francis, London (2005). [Google Scholar]
  2. L. Ambrosio and V.M. Tortorelli, Approximation of functional depending on jumps via by elliptic functionals via Г-convergence. Comm. Pure Appl. Math. 43 (1990) 999–1036. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Arndt, M. Griebel and T. Roubček, Modelling and numerical simulation of martensitic transformation in shape memory alloys. Continuum Mech. Thermodyn. 15 (2003) 463–485. [CrossRef] [MathSciNet] [Google Scholar]
  4. D.N. Arnold and G. Awanou, Rectangular mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 15 (2005) 1417–1429. [Google Scholar]
  5. D.N. Arnold and R. Winther, Mixed finite elements for elasticity. Numer. Math. 92 (2002) 401–419. [Google Scholar]
  6. D.N. Arnold, G. Awanou and R. Winther, Finite elements for symmetric tensors in three dimensions. Math. Comput. 77 (2008) 1229–1251. [Google Scholar]
  7. E. Bécache, P. Joly and C. Tsogka, Fictitious domains, mixed finite elements and perfectly matched layers for 2D elastic wave propagation. J. of Comput. Acoustics 9 (2001) 1175–1202. [Google Scholar]
  8. E. Bécache, P. Joly and C. Tsogka, A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal. 39 (2002) 2109–2132. [Google Scholar]
  9. E. Bécache, A. Ezziani and P. Joly, A mixed finite element approach for viscoelastic wave propagation. Comput. Geosci. 8 (2004) 255–299. [Google Scholar]
  10. E. Bécache, G. Derveaux and P. Joly, An efficient numerical method for the resolution of the Kirchhoff-Love dynamic plate equation. Numer. Meth. Partial Differ. Equ. 21 (2005) 323–348. [Google Scholar]
  11. E. Bécache, J. Rodrguez and C. Tsogka, Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition. ESAIM:M2AN 43 (2009) 377–398. [CrossRef] [EDP Sciences] [Google Scholar]
  12. M.A. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155–164. [Google Scholar]
  13. T. Bohlen, Parallel 3D viscoelastic finite difference seismic modelling. Comput. Geosci. 28 (2002) 887–899. [Google Scholar]
  14. M. Bonnet, A. Burel, M. Duruflé and P. Joly, Effective transmission conditions for thin-layer transmission problems in elastodynamics. The case of a planar layer model. ESAIM:M2AN 50 (2016) 43–75. [EDP Sciences] [Google Scholar]
  15. M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes and C.M. Landis, A phase-field description of dynamic brittle fracture. Comput. Meth. Appl. Mech. Eng. 217–220 (2012) 77–95. [Google Scholar]
  16. J.M. Carcione, Wave Fields in Real Media, Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Elsevier, Amsterdam (2015). [Google Scholar]
  17. A.H.-D. Cheng, Poroelasticity. Springer, Switzerland (2016). [Google Scholar]
  18. E.T. Chung, C.Y. Lam and J. Qian, A staggered discontinuous Galerkin method for the simulation of seismic waves with surface topography. Geophysics 80 (2015) T119–T135. [Google Scholar]
  19. G. Cohen and S. Pernet, Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations. Springer, Dordrecht (2017). [Google Scholar]
  20. R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100 (1928) 32–74. [Google Scholar]
  21. S. Delcourte and N. Glinsky, Analysis of a high-order space and time discontinuous Galerkin method for elastodynamic equations. Application to 3D wave propagation. ESAIM:M2AN 49 (2015) 1085–1126. [EDP Sciences] [Google Scholar]
  22. A. Ezziani, Modélisation mathématique et numérique de la propagation d’ondes dans les milieux viscoélastiques et poroélastiques. Ph.D. thesis, Univ. Paris IX Dauphine (2005). [Google Scholar]
  23. C. Farhat, M. Lesoinne and N. Maman, Mixed explicit/implicit time integration of coupled aeroelastic problems: three field formulation, geometric conservation and distributed solution. Int. J. Numer. Meth. Fluids 21 (1995) 807–835. [Google Scholar]
  24. C.A. Felippa, K.C. Park and C. Farhat, Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190 (2001) 3247–3270. [Google Scholar]
  25. R.W. Graves, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Amer. 86 (1996) 1091–1106. [Google Scholar]
  26. A.E. Green and P.M. Naghdi, A general theory of an elastic-plastic continuum. Arch. Rational Mech. Anal. 18 (1965) 251–281. [Google Scholar]
  27. J.-P. Groby, Modélisation de la propagation des ondes élastiques générées par un séisme proche ou éloigné à l’intérieur d’une ville. Ph.D. thesis, Universit de la Méditerranée – Aix-Marseille II (2005). [Google Scholar]
  28. W. Han and B.D. Reddy, Plasticity. Springer, New York (1999). [Google Scholar]
  29. M. Hofacker and C. Miehe, Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int. J. Fract. 178 (2012) 113–129. [Google Scholar]
  30. M. Jirásek, Nonlocal theories in continuum mechanics. Acta Polytech. 44 (2004) 16–34. [Google Scholar]
  31. P. Joly and C. Tsogka, Finite Element Methods with Discontinuous Displacement. Chapter 11. Chapman & Hall/CRC, Boca Raton, FL (2008). [Google Scholar]
  32. L.M. Kachanov, Time of rupture process under creep conditions. Izv. Akad. Nauk SSSR 8 (1958) 26. [Google Scholar]
  33. R. Kolman, J. Plešek, J. Červ and D. Gabriel, Grid dispersion analysis of plane square biquadratic serendipity finite elements in transient elastodynamics. Int. J. Numer. Meth. Eng. 96 (2013) 1–28. [Google Scholar]
  34. R. Kolman, J. Plešek, J. Červ, M. Okrouhlk and P. Pařk, Temporal-spatial dispersion and stability analysis of finite element method in explicit elastodynamics. Int. J. Numer. Meth. Eng. 106 (2016) 113–128. [Google Scholar]
  35. M. Kružk and T. Roubček, Mathematical Methods in Continuum Mechanics of Solids. Springer, Switzeland (2019). [Google Scholar]
  36. G.A. Maugin, The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech. Res. Commun. 69 (2015) 79–86. [Google Scholar]
  37. A. Mielke and T. Roubček, Rate-Independent Systems – Theory and Application. Springer, New York (2015). [Google Scholar]
  38. Y.N. Rabotnov, Creep Problems in Structural Members. North-Holland, Amsterdam (1969). [Google Scholar]
  39. T. Roubček, Nonlinear Partial Differential Equations with Applications, 2nd edition. Birkhäuser, Basel (2013). [Google Scholar]
  40. T. Roubček, An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Disc. Cont. Dynam. Syst. S 10 (2017) 867–893. [Google Scholar]
  41. T. Roubček and C.G. Panagiotopoulos, Energy-conserving time-discretisation of abstract dynamical problems with applications in continuum mechanics of solids. Numer. Funct. Anal. Optim. 38 (2017) 1143–1172. [Google Scholar]
  42. T. Roubček and R. Vodička, A monolithic model for phase-field fracture and waves in solid-fluid media towards earthquakes. Int. J. Fract. 219 (2019) 135. [Google Scholar]
  43. T. Roubček, M. Kružk, V. Mantič, C.G. Panagiotopoulos, R. Vodička and J. Zeman, Delamination and adhesive contacts, their mathematical modeling and numerical treatment, edited by V. Mantič, 2nd edition. In: Math. Methods and Models in Composites. Imperial College Press (2017). [Google Scholar]
  44. T. Roubček, C.G. Panagiotopoulos, and C. Tsogka, Explicit time-discretisation of elastodynamics with some inelastic processes at small strains. Preprint arXiv:1903.11654 (2019). [Google Scholar]
  45. G. Scarella, Etude théorique et numérique de la propagation d’ondes en présence de contact unilatéral dans un milieu fissuré. Ph.D. thesis, Univ. Paris Dauphine (2004). [Google Scholar]
  46. A. Schlüter, A. Willenbücher, C. Kuhn and R. Müller, Phase field approximation of dynamic brittle fracture. Comput. Mech. 54 (2014) 1141–1161. [Google Scholar]
  47. S. Seifi, K.C. Park and H.S. Park, A staggered explicit-implicit finite element formulation forelectroactive polymers. Comput. Methods Appl. Mech. Eng. 337 (2018) 150–164. [Google Scholar]
  48. B. Straughan, Stability and Wave Motion in Porous Media. Springer, New York (2008). [Google Scholar]
  49. R. Temam, Mathematical Problems in Plasticity (French original in 1983). Gauthier-Villars, Paris (1985). [Google Scholar]
  50. C. Tsogka, Modelisation mathématique et numérique de la propagation des ondes élastiques tridimensionnelles dans des milieux fissurés. Ph.D. thesis, Univ. Paris IX Dauphine (1999). [Google Scholar]
  51. J. Virieux, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 49 (1984) 1933–1957. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you