Free Access
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S507 - S533
Published online 26 February 2021
  1. A. Barnett and L. Greengard, A new integral representation for quasi-periodic scattering problems in two dimensions. BIT 51 (2011) 67–90. [Google Scholar]
  2. M. Born and E. Wolf, Principles of Optics, 6th edition. Cambridge University (1980). [Google Scholar]
  3. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 2nd edition. Springer (2002). [Google Scholar]
  4. N. Chateau and J.-P. Hugonin, Algorithm for the rigorous coupled-wave analysis of grating diffraction. J. Opt. Soc. Am. A 11 (1994) 1321–1331. [Google Scholar]
  5. Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41 (2004) 799–826. [Google Scholar]
  6. B.J. Civiletti, A. Lakhtakia and P.B. Monk, Analysis of the rigorous coupled wave approach for s-polarized light in gratings. J. Comput. Appl. Math. 368 (2019) 112478. [Google Scholar]
  7. B. Delourme, High-order asymptotics for the electromagnetic scattering by thin periodic layers. Math. Methods Appl. Sci. 38 (2015) 811–833. [Google Scholar]
  8. B. Delourme, H. Haddar and P. Joly, Approximate models for wave propagation across thin periodic interfaces. J. Math. Pures Appl. 98 (2012) 28–71. [Google Scholar]
  9. B. Delourme, H. Haddar and P. Joly, On the well-posedness, stability and accuracy of an asymptotic model for thin periodic interfaces in electromagnetic scattering problems. Math. Models Methods Appl. Sci. 23 (2013) 2433–2464. [Google Scholar]
  10. J. Elschner and G. Schmidt, Diffraction in periodic structures and optimal design of binary gratings. Part I: direct problems and gradient formulas. Math. Meth. Appl. Sci. 21 (1998) 1297–1342. [Google Scholar]
  11. A. Gillman and A. Barnett, A fast direct solver for quasi-periodic scattering problems. J. Comp. Phys. 248 (2013) 309–322. [Google Scholar]
  12. G. Granet and B. Guizal, Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization. J. Opt. Soc. Am. A 13 (1996) 1019–1023. [Google Scholar]
  13. H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15 (2005) 1273–1300. [Google Scholar]
  14. P. Lalanne and G.M. Morris, Highly improved convergence of the coupled-wave method for TM polarization. J. Opt. Soc. Am. A 13 (1996) 779–784. [Google Scholar]
  15. L. Li, Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 13 (1996) 1870–1876. [Google Scholar]
  16. L. Li, New formulation of the Fourier modal method for crossed surface-relief gratings. J. Opt. Soc. Am. A 14 (1997) 2758–2767. [Google Scholar]
  17. E.G. Loewen and E. Popov, Diffraction Gratings and Applications. Marcel Dekker (1997). [Google Scholar]
  18. D. Maystre, editor, Selected Papers on Diffraction Gratings. SPIE Press (1993). [Google Scholar]
  19. A. Maurel, J.-J. Marigo and A. Ourir, Homogenization of ultrathin metallo-dielectric structures leading to transmission conditions at an equivalent interface. J. Opt. Soc. Am. B. 33 (2016) 947–956. [Google Scholar]
  20. M.G. Moharam, E.B. Grann and D.A. Pommet, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12 (1995) 1068–1076. [Google Scholar]
  21. P.B. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). [CrossRef] [Google Scholar]
  22. Ö. Özdemir, H. Haddar and A. Yaka, Reconstruction of the electromagnetic field in layered media using the concept of approximate transmission conditions. IEEE Trans. Antennas Propag. 59 (2011) 2964–2972. [Google Scholar]
  23. C. Rivas, M.E. Solano, R. Rodriguez, P.B. Monk and A. Lakhtakia, Asymptotic model for finite-element calculations of diffraction by shallow metallic surface-relief gratings. J. Opt. Soc. Am. A 34 (2017) 68–79. [Google Scholar]
  24. M.E. Solano, M. Faryad, A.S. Hall, T.E. Mallouk, P.B. Monk and A. Lakhtakia, Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating. Appl. Opt. 52 (2013) 966–979. [PubMed] [Google Scholar]
  25. M.E. Solano, M. Faryad, P.B. Monk, T.E. Mallouk and A. Lakhtakia, Periodically multilayered planar optical concentrator for photovoltaic solar cells. Appl. Phys. Lett. 103 (2013) 191115. [Google Scholar]
  26. M.E. Solano, M. Faryad, A. Lakhtakia and P.B. Monk, Comparison of rigorous coupled-wave approach and finite element method for photovoltaic devices with periodically corrugated metallic back reflector. J. Opt. Soc. Am. A 31 (2014) 2275–2284. [Google Scholar]
  27. M.E. Solano, G.D. Barber, A. Lakhtakia, M. Faryad, P.B. Monk and T.E. Mallouk, Buffer layer between a planar optical concentrator and a solar cell. AIP Adv. 5 (2015) 097150. [Google Scholar]
  28. M.V. Shuba, M. Faryad, M.E. Solano, P.B. Monk and A. Lakhtakia, Adequacy of the rigorous coupled-wave approach for thin-film silicon solar cells with periodically corrugated metallic backreflectors: spectral analysis. J. Opt. Soc. Am. A 32 (2015) 1222–1230. [Google Scholar]
  29. A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition. Artech House (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you