Open Access
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S535 - S571
Published online 26 February 2021
  1. S. Abarbanel and D. Gottlieb, Stability of two-dimensional initial boundary value problems using leap-frog type schemes. Math. Comput. 33 (1979) 1145–1155. [Google Scholar]
  2. X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4 (2008) 729–796. [MathSciNet] [Google Scholar]
  3. A. Arnold, M. Ehrhardt and I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Commun. Math. Sci. 1 (2003) 501–556. [Google Scholar]
  4. A. Arnold, M. Ehrhardt, M. Schulte and I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation on circular domains. Commun. Math. Sci. 10 (2012) 889–916. [Google Scholar]
  5. G.A. Baker, Jr., Essentials of Padé Approximants. Academic Press (1975). [Google Scholar]
  6. G.A. Baker, Jr., Counter-examples to the Baker–Gammel–Wills conjecture and patchwork convergence. J. Comput. Appl. Math. 179 (2005) 1–14. [Google Scholar]
  7. G.A. Baker, Jr. and P. Graves-Morris, Padé Approximants, 2nd edition. In: Vol. 59 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1996). [Google Scholar]
  8. V.A. Baskakov and A.V. Popov, Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion 14 (1991) 123–128. [Google Scholar]
  9. A. Benoit, Geometric optics expansions for hyperbolic corner problems, I: self-interaction phenomenon. Anal. PDE 9 (2016) 1359–1418. [Google Scholar]
  10. S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications. Oxford University Press (2007). [Google Scholar]
  11. C. Besse, P. Noble and D. Sanchez, Discrete transparent boundary conditions for the mixed KDV–BBM equation. J. Comput. Phys. 345 (2017) 484–509. [Google Scholar]
  12. C. Besse, B. Mésognon-Gireau and P. Noble, Artificial boundary conditions for the linearized Benjamin–Bona–Mahony equation. Numer. Math. 139 (2018) 281–314. [Google Scholar]
  13. G. Beylkin and L. Monzón, On approximation of functions by exponential sums. Appl. Comput. Harmonic Anal. 19 (2005) 17–48. [Google Scholar]
  14. G. Beylkin and L. Monzón, Approximation by exponential sums revisited. Appl. Comput. Harmonic Anal. 28 (2010) 131–149. Special Issue on Continuous Wavelet Transform in Memory of Jean Morlet, Part I. [Google Scholar]
  15. J.-F. Coulombel, Transparent numerical boundary conditions for evolution equations: derivation and stability analysis. Ann. Fac. Sci. Toulouse Math. 28 (2019) 259–327. [Google Scholar]
  16. G. Dakin, B. Després and S. Jaouen, Inverse Lax-Wendroff boundary treatment for compressible Lagrange-remap hydrodynamics on Cartesian grids. J. Comput. Phys. 353 (2018) 228–257. [Google Scholar]
  17. A. Dedner, D. Kröner, I.L. Sofronov and M. Wesenberg, Transparent boundary conditions for mhd simulations in stratified atmospheres. J. Comput. Phys. 171 (2001) 448–478. [Google Scholar]
  18. M. Ehrhardt and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation. In: Fluid dynamic processes with inelastic interactions at the molecular scale (Torino, 2000). Riv. Mat. Univ. Parma 4 (2001) 57–108. [Google Scholar]
  19. B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31 (1977) 629–651. [Google Scholar]
  20. F. Filbet and C. Yang, An inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models. J. Comput. Phys. 245 (2013) 43–61. [Google Scholar]
  21. M. Goldberg, On a boundary extrapolation theorem by Kreiss. Math. Comput. 31 (1977) 469–477. [Google Scholar]
  22. B. Gustafsson, H.-O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods. John Wiley & Sons, New York (1995). [Google Scholar]
  23. L. Halpern, Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation. Math. Comput. 38 (1982) 415–429. [Google Scholar]
  24. H.-O. Kreiss, Difference approximations for hyperbolic differential equations. In: Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965). Academic Press (1966) 51–58. [Google Scholar]
  25. P.D. Lax and B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy. Commun. Pure Appl. Math. 17 (1964) 381–398. [Google Scholar]
  26. S. Osher, An ill posed problem for a hyperbolic equation near a corner. Bull. Am. Math. Soc. 79 (1973) 1043–1044. [Google Scholar]
  27. S. Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I. Trans. Am. Math. Soc. 176 (1973) 141–164. [Google Scholar]
  28. S. Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. II. Trans. Am. Math. Soc. 198 (1974) 155–175. [Google Scholar]
  29. R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems. Graduate Texts in Mathematics. Interscience Publishers John Wiley & Sons (1967)Theory and applications. [Google Scholar]
  30. L. Sarason and J.A. Smoller, Geometrical optics and the corner problem. Arch. Ratio. Mech. Anal. 56 (1974/75) 34–69. [Google Scholar]
  31. C.-W. Shu and S. Tan, Inverse Lax–Wendroff procedure for numerical boundary treatment of hyperbolic equations. In: Vol. 18 of Handbook of Numerical Methods for Hyperbolic ProblemsHandbook of Numerical Analysis. North-Holland, Elsevier (2017) 23–52. [Google Scholar]
  32. G. Szegö, Orthogonal Polynomials. American Mathematical Society, Providence, RI (1975). [Google Scholar]
  33. S. Tan and C.-W. Shu, Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput. Phys. 229 (2010) 8144–8166. [Google Scholar]
  34. L.N. Trefethen, Group velocity in finite difference schemes. SIAM Rev. 24 (1982) 113–136. [CrossRef] [MathSciNet] [Google Scholar]
  35. L.N. Trefethen, Instability of difference models for hyperbolic initial boundary value problems. Commun. Pure Appl. Math. 37 (1984) 329–367. [Google Scholar]
  36. F. Vilar and C.-W. Shu, Development and stability analysis of the inverse Lax-Wendroff boundary treatment for central compact schemes. ESAIM:M2AN 49 (2015) 39–67. [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you