Free Access
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S677 - S704
Published online 26 February 2021
  1. R. Abgrall, E. Le Mélédo and P. Öffner, On the connection between residual distribution schemes and flux reconstruction. Preprint: 1807.01261 (2018). [Google Scholar]
  2. R. Abgrall, É. Le Mélédo and P. Öffner, A class of finite dimensional spaces and H-(div) conformal elements on general polytopes. Preprint: 1907.08678 (2019). [Google Scholar]
  3. J. Aghili, D. Di Pietro and B. Ruffini, An hp-hybrid high-order method for variable diffusion on general meshes. Comput. Methods Appl. Math. 17 (2017) 359–376. [Google Scholar]
  4. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM:M2AN 50 (2016) 727–747. [CrossRef] [EDP Sciences] [Google Scholar]
  5. F. Bonaldi, D. Di Pietro, G. Geymonat and F. Krasucki, A hybrid high-order method for kirchhoff-love plate bending problems. ESAIM:M2AN 52 (2018) 393–421. [EDP Sciences] [Google Scholar]
  6. L. Botti, D. Di Pietro and J. Droniou, A hybrid high-order method for the incompressible navier-stokes equations based on temam’s device. J. Comput. Phys. 376 (2019) 786–816. [Google Scholar]
  7. F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [Google Scholar]
  8. J. Chabrowski, The Dirichlet Problem with L2-boundary Data for Elliptic Linear Equations. Springer (2006). [Google Scholar]
  9. W. Chen and Y. Wang, Minimal degree H(curl) and H(div) conforming finite elements on polytopal meshes. Math. Comput. 86 (2017) 2053–2087. [Google Scholar]
  10. B. Cockburn, G.E. Karniadakis and C.W. Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer Science & Business Media 11 (2012). [Google Scholar]
  11. L.B. Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
  12. L.B. Da Veiga, F. Brezzi, L.D. Marini and A. Russo, H(div) and H(curl)-conforming virtual element methods. Numer. Math. 133 (2016) 303–332. [Google Scholar]
  13. L.B. Da Veiga, F. Brezzi, L.D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50 (2016) 727–747. [CrossRef] [EDP Sciences] [Google Scholar]
  14. D. Di Pietro and S. Lemaire, An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and stokes flow. Math. Comput. 84 (2015) 1–31. [Google Scholar]
  15. D.A. Di Pietro and A. Ern, Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA J. Numer. Anal. 37 (2016) 40–63. [CrossRef] [Google Scholar]
  16. F. Dubois, I. Greff and C. Pierre, Raviart-Thomas finite elements of petrov-galerkin type. ESAIM:M2AN 53 (2017) 1553–1576. [Google Scholar]
  17. A. Gillette, A. Rand and C. Bajaj, Construction of scalar and vector finite element families on polygonal and polyhedral meshes. Comput. Methods Appl. Math. 16 (2016) 667–683. [Google Scholar]
  18. H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference (2007) 4079. [Google Scholar]
  19. P. Lesaint and P. Raviart, On a finite element method for solving the neutron transport equation, edited by C. De Boor. Mathematical Aspects of Finite Element in Partial Differential Equations. Academic Press (1974) 89–123. [Google Scholar]
  20. K. Lipnikov, G. Manzini and M. Shashkov, Mimetic finite difference method. J. Comput. Phys. 257 (2014) 1163–1227. [Google Scholar]
  21. R. Loubère, P.H. Maire and M. Shashkov, Reale: a reconnection arbitrary-lagrangian-eulerian method in cylindrical geometry. Comput. Fluids 46 (2011) 59–69. [Google Scholar]
  22. J. Nédélec, Mixed finite elements in ℝ3. Numer. Math. 35 (1980) 315–341. [Google Scholar]
  23. H. Ranocha, P. Öffner and T. Sonar, Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311 (2016) 299–328. [Google Scholar]
  24. P.A. Raviart and J.M. Thomas, A mixed finite element method for 2-nd order elliptic problems. Mathematical Aspects of Finite Element Methods. Springer, Berlin Heidelberg, Berlin, Heidelberg (1977) 292–315. [Google Scholar]
  25. W. Reeds and T. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479. Los Alamos (1973). [Google Scholar]
  26. N. Sukumar and E.A. Malsch, Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Eng. 13 (2006) 129. [Google Scholar]
  27. C. Talischi, A. Pereira, G.H. Paulino, I.F.M. Menezes and M.S. Carvalho, Polygonal finite elements for incompressible fluid flow. Int. J. Numer. Methods Fluids 74 (2013) 134–151. [Google Scholar]
  28. P. Vincent, P. Castonguay and A. Jameson, A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47 (2011) 50–72. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you