Free Access
Issue |
ESAIM: M2AN
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
|
|
---|---|---|
Page(s) | S909 - S939 | |
DOI | https://doi.org/10.1051/m2an/2020064 | |
Published online | 26 February 2021 |
- R. Adams and J. Fournier, Sobolev Spaces. Vol. 140 of Pure and Applied Mathematics. Academic Press (2003). [Google Scholar]
- B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. [Google Scholar]
- P.F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. [Google Scholar]
- P.F. Antonietti, L. Beirão da Veiga, S. Scacchi and M. Verani, A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. [Google Scholar]
- E. Artioli, S. de Miranda, C. Lovadina and L. Patruno, A stress/displacement virtual element method for plane elasticity problems. Comput. Methods Appl. Mech. Eng. 325 (2017) 155–174. [Google Scholar]
- S.I. Barry and G.N. Mercer, Exact solutions for two-dimensional time-dependent flow and deformation within a poroelastic medium. Trans. ASME J. Appl. Mech. 6 (1999) 536–540. [CrossRef] [Google Scholar]
- L. Beirão da Veiga and K. Lipnikov, A mimetic discretization of the Stokes problem with selected edge bubbles. SIAM J. Sci. Comput. 32 (2010) 875–893. [Google Scholar]
- L. Beirão da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. [Google Scholar]
- L. Beirão da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. Vol. 11 of MS&A – Modeling, Simulation and Applications. Springer, Cham (2014). [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Virtual Element Implementation for General Elliptic Equations. Springer International Publishing, Cham (2016) 39–71. [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26 (2016) 729–750. [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50 (2016) 727–747. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. [Google Scholar]
- L. Beirão da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Beirão da Veiga, C. Lovadina and G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (2018) 1210–1242. [Google Scholar]
- M.F. Benedetto, S. Berrone, A. Borio, S. Pieraccini and S. Scialò, Order preserving SUPG stabilization for the virtual element formulation of advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 311 (2016) 18–40. [Google Scholar]
- L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity. SIAM J. Sci. Comput. 37 (2015) A2222–A2245. [Google Scholar]
- C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 71–79. [Google Scholar]
- M.A. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155–164. [Google Scholar]
- M.A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26 (1955) 182–185. [Google Scholar]
- D. Boffi, M. Botti and D.A. Di Pietro, A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput. 38 (2016) A1508–A1537. [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics. Springer, New York (2007). [Google Scholar]
- S.C. Brenner, Q. Guan and L. Sung, Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. [CrossRef] [Google Scholar]
- F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. [CrossRef] [EDP Sciences] [Google Scholar]
- R. Bürger, S. Kumar, D. Mora, R. Ruiz-Baier and N. Verma, Virtual element methods for the three-field formulation of time–dependent linear poroelasticity. Preprint arXiv:1912.06029. [Google Scholar]
- A. Cangiani, E.H. Georgoulis, T. Pryer and O.J. Sutton, A posteriori estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. [Google Scholar]
- O. Čertk, F. Gardini, G. Manzini and G. Vacca, The virtual element method for eigenvalue problems with potential terms on polytopic meshes. Appl. Math. 63 (2018) 333–365. [Google Scholar]
- G. Chen and M. Feng, Stabilized finite element methods for Biot’s consolidation problems using equal order elements. Adv. Appl. Math. Mech. 10 (2018) 77–99. [Google Scholar]
- L. Chen and J. Huang, Some error analysis on virtual element methods. Calcolo 55 (2018) 5. [CrossRef] [Google Scholar]
- Y. Chen, Y. Luo and M. Feng, Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219 (2013) 9043–9056. [Google Scholar]
- Y. Chen, G. Chen and X. Xie, Weak Galerkin finite element method for Biot’s consolidation problem. J. Comput. Appl. Math. 330 (2018) 398–416. [Google Scholar]
- J. Coulet, I. Faille, V. Girault, N. Guy and F. Nataf, Fully coupled schemes using virtual element and finite volume discretisations for Biot equations modelling. In: ECMOR XVI–16th European Conference on the Mathematics of Oil Recovery (2018). [Google Scholar]
- M. Fortin, Old and new finite elements for incompressible flows. Int. J. Numer. Methods Fluids 1 (1981) 347–364. [Google Scholar]
- G. Fu, A high-order HDG method for the Biot’s consolidation model. Comput. Math. Appl. 77 (2019) 237–252. [Google Scholar]
- A.L. Gain, C. Talischi and G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. [Google Scholar]
- F. Gardini and G. Vacca, Virtual element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal. 38 (2018) 2026–2054. [CrossRef] [Google Scholar]
- F. Gardini, G. Manzini and G. Vacca, The nonconforming Virtual Element Method for eigenvalue problems. ESAIM: M2AN 53 (2019) 749–774. [CrossRef] [EDP Sciences] [Google Scholar]
- X. Hu, C. Rodrigo, F.J. Gaspar and L.T. Zikatanov, A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310 (2017) 143–154. [Google Scholar]
- X. Hu, L. Mu and X. Ye, Weak Galerkin method for the Biot’s consolidation model. Comput. Math. Appl. 75 (2018) 2017–2030. [Google Scholar]
- J.J. Lee, Robust three-field finite element methods for Biot’s consolidation model in poroelasticity. BIT 58 (2018) 347–372. [CrossRef] [Google Scholar]
- X. Liu and Z. Chen, The nonconforming virtual element method for the Navier-Stokes equations. Adv. Comput. Math. 45 (2019) 51–74. [Google Scholar]
- D. Mora, G. Rivera and R. Rodrguez, A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. [Google Scholar]
- M. Murad and A. Loula, Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Eng. 95 (1992) 359–382. [Google Scholar]
- M. Murad and A. Loula, On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37 (1994) 645–667. [Google Scholar]
- M. Murad, V. Thomée and A. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33 (1996) 1065–1083. [Google Scholar]
- P.J. Phillips, Finite element methods in linear poroelasticity: theoretical and computational results, Ph.D. thesis. ProQuest LLC, Ann Arbor, MI/The University of Texas, Austin (2005). [Google Scholar]
- P.J. Phillips and M.F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput. Geosci. 11 (2007) 131–144. [Google Scholar]
- P.J. Phillips and M.F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete in time case. Comput. Geosci. 11 (2007) 145–158. [Google Scholar]
- P.J. Phillips and M.F. Wheeler, A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity. Comput. Geosci. 12 (2008) 417–435. [Google Scholar]
- P.J. Phillips and M.F. Wheeler, Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach. Comput. Geosci. 13 (2009) 5–12. [Google Scholar]
- M.B. Reed, An investigation of numerical errors in the analysis of consolidation by finite elements. Int. J. Numer. Anal. 8 (1984) 234–257. [Google Scholar]
- C. Rodrigo, F. Gaspar, X. Hu and L. Zikatanov, Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Methods Appl. Mech. Eng. 298 (2016) 183–204. [Google Scholar]
- O.J. Sutton, The virtual element method in 50 lines of MATLAB. Numer. Algorithms 75 (2016) 1141–1159. [Google Scholar]
- X. Tang, Z. Liu, B. Zhang and M. Feng, A low-order locking-free virtual element for linear elasticity problems. Comput. Math. Appl. 80 (2020) 1260–1274. [Google Scholar]
- K. Terzaghi, Theoretical Soil Mechanics. John Wiley & Sons, New York (1943). [Google Scholar]
- G. Vacca, Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74 (2017) 882–898. [Google Scholar]
- G. Vacca and L. Beirão da Veiga, Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Part. Differ. Equ. 31 (2015) 2110–2134. [CrossRef] [Google Scholar]
- P. Vermeer and A. Verruijt, An accuracy condition for consolidation by finite elements. Int. J. Numer. Anal. Methods Geomech. 5 (1981) 1–14. [Google Scholar]
- S.-Y. Yi, A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Part. Differ. Equ. 29 (2013) 1749–1777. [Google Scholar]
- S.-Y. Yi, A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal. 55 (2017) 1915–1936. [Google Scholar]
- B. Zhang and M. Feng, Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation. Appl. Math. Comput. 328 (2018) 1–25. [Google Scholar]
- B. Zhang, Y. Yang and M. Feng, Mixed virtual element methods for elastodynamics with weak symmetry. J. Comput. Appl. Math. 353 (2018) 49–71. [Google Scholar]
- O.C. Zienkiewicz and T. Shiomi, Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. Int. J. Numer. Anal. Methods Geomech. 8 (1984) 71–96. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.